MATRL 218/CHEM 277: Introduction to Inorganic Materials

Catalog Description:
An introduction to typical inorganic materials, with an emphasis on crystalline materials (some discussion of quasicrystalline and amorphous materials) and how their material properties can be understood based on the constituent atoms, and the crystal and electronic structure. Includes rudiments of crystallography, and notions of how crystal structures are built up from the concepts of close-packing and of the linking of polyhedra. Some discussion of specific structure types with reference to advanced material properties such as thermal and electrical transport, superconductivity, ferroic behavior and magnetism.

Target audience:
The course is for graduate students with some prior knowledge of inorganic materials and crystallography. Advanced undergraduate students are welcome.

Textbooks (none are required):

Instructor:
Ram Seshadri, Associate Professor of Materials, and Associate Professor, Department of Chemistry & Biochemistry
MRL Rm 3008, x6129, seshadri@mrl.ucsb.edu

Course Website:
http://www.mrl.ucsb.edu/~seshadri/teach.html

Grading:
4 best from 5 to 6 assignments (30%), Midterm (30%), Final (40%).
Outline:

1. Recent excitement in understanding structure-property relationships

2. Classification of materials as amorphous and crystalline, and the structural hierarchy in a polycrystalline material. Quasicrystalline and amorphous materials. The glass transition.

3. Cohesion in solids — Ionic, covalent, metallic, van der Waals

4. Crystallography in a nutshell: Lattices, unit cells, symmetry — how crystallography simplifies the depiction of structures

5. Packings: CCP and HCP, voids, radius ratio rules, the structures of elements — α-Po, α-Fe, Cu, Mg, Si, C (graphite)

6. Pauling’s rules for ionic crystals and the concept of Bond Valence

7. Description of crystal structures: AB, AB$_2$, AB$_3$ (ReO$_3$), perovskites, K$_2$NiP$_4$

8. Electronic structures of crystalline solids — energy bands, densities of states, crystal fields, the band gaps in semiconductors

9. Thermal properties: Heat capacity, thermal expansion, thermal transport

10. Metals, non-metals and the metal-insulator transitions — examples of perovskites

11. Bonding in solids and the elastic properties of materials

12. Cooperative magnetism in solids — examples of perovskites and spinels

13. Structural phase transitions in solids — the example of BaTiO$_3$

14. Special topics: Structure-property relations in advanced materials:

 - GMR/CMR: Systems and phenomena
 - Polar materials: Normal and relaxor ferroelectrics, and piezoelectric materials
 - High T_C superconductors