Mechanical Properties of Nanoparticles

Daniel Lowrey
Materials 265
December 2008
Overview

- Measuring single nanoparticles
 - Why isn’t it done more often?
 - Compression of single nanoparticles
 - Some applied theories
Why Not Test a Nanoparticle?

- Nanostructured Materials
 - Hall-Petch (GB dominate dislocation behavior)

- Nanoparticle Composites
 - Often clay or CNT in polymer
 - Matrix softer, interface limited

- Nanoparticles in Solution
 - Jamming, lubrication, aggregation dominate

Y. Min, M. Akbulut, R.K. Prud’homme, Y. Golan, and J. Israelachvili
Fracturing a Nanoparticle

- **STM in TEM**
 - 300 nm radius tip
 - Berkovich Geometry
- **Si Nanoparticle**
 - HPPD

Plastic Deformation

- Si particle deforms plastically leaving residual stress
 - Shows on repeated compression

Hertzian Approximation

- Model of a deformable sphere between hard surfaces
- Hertzian curve underestimates modulus

Dislocations in Nanoparticles

- Crystal structure dependent
 - fcc hardens by dislocation starvation
 - bcc hardens by “traditional” work hardening

J. Greer MRL lecture 11/7/2008
Attached to a Surface

<table>
<thead>
<tr>
<th>F_{max} (µN)</th>
<th>H_{Particle} (GPa)</th>
<th>h_{max} (µm)</th>
<th>h_c (µm)</th>
<th>R_C (µm)</th>
<th>E_c (GPa)</th>
<th>H (GPa)</th>
<th>H_{Particle} (GPa)</th>
<th>H by Linear Increase in Contact Area with Indentation Depth (GPa)</th>
<th>H by Geometric Contact Area (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>42.9</td>
<td>4.6</td>
<td>2.6</td>
<td>10.6</td>
<td>737</td>
<td>3.5</td>
<td>76.5</td>
<td>4.0</td>
<td>91</td>
</tr>
<tr>
<td>10</td>
<td>43.4</td>
<td>4.1</td>
<td>2.5</td>
<td>19.8</td>
<td>780</td>
<td>3.5</td>
<td>81.3</td>
<td>3.9</td>
<td>9.0</td>
</tr>
<tr>
<td>10</td>
<td>48.0</td>
<td>5.4</td>
<td>2.9</td>
<td>32.4</td>
<td>553</td>
<td>3.0</td>
<td>56.4</td>
<td>2.9</td>
<td>6.5</td>
</tr>
<tr>
<td>10</td>
<td>49.9</td>
<td>5.4</td>
<td>3.1</td>
<td>34.7</td>
<td>559</td>
<td>2.6</td>
<td>57.0</td>
<td>2.7</td>
<td>6.1</td>
</tr>
<tr>
<td>10</td>
<td>52.6</td>
<td>5.3</td>
<td>3.4</td>
<td>35.4</td>
<td>630</td>
<td>2.5</td>
<td>64.7</td>
<td>2.6</td>
<td>5.9</td>
</tr>
<tr>
<td>10</td>
<td>54.4</td>
<td>4.6</td>
<td>3.1</td>
<td>33.6</td>
<td>784</td>
<td>2.8</td>
<td>81.8</td>
<td>2.8</td>
<td>6.5</td>
</tr>
<tr>
<td>10</td>
<td>59.3</td>
<td>5.1</td>
<td>3.1</td>
<td>33.3</td>
<td>595</td>
<td>2.8</td>
<td>64.0</td>
<td>2.3</td>
<td>5.4</td>
</tr>
<tr>
<td>10</td>
<td>60.0</td>
<td>5.7</td>
<td>3.9</td>
<td>38.1</td>
<td>626</td>
<td>2.2</td>
<td>64.3</td>
<td>2.1</td>
<td>4.8</td>
</tr>
<tr>
<td>10</td>
<td>63.0</td>
<td>5.1</td>
<td>3.4</td>
<td>35.0</td>
<td>738</td>
<td>2.6</td>
<td>76.5</td>
<td>2.2</td>
<td>5.1</td>
</tr>
<tr>
<td>10</td>
<td>75.0</td>
<td>4.8</td>
<td>3.6</td>
<td>33</td>
<td>672</td>
<td>2.8</td>
<td>69.4</td>
<td>1.9</td>
<td>4.4</td>
</tr>
</tbody>
</table>

Average: 54.8 ± 10.0, 5.0 ± 0.5, 3.1 ± 0.4, 33.6 ± 2.4, 46.7 ± 8.8, 2.8 ± 0.4, 68.9 ± 9.6, 2.8 ± 0.7, 16.3 ± 1.6

H_{Particle} is the nanoparticle height before indentation, h_{max} is the maximum indentation displacement, h_c is the contact depth, and R_C is the contact radius.

Silica on silicon

Nanoindenter, image from SPM

Other Considerations

- Fraction of surface atoms
- Curvature
- Defect density
- Allowed mechanical modes
 - Compression
 - Tension, torsion,