Class 13: Fluorite, Pyrochlore, Murataite, ice

\[z = \frac{3}{4} \]

- fcc
 - Fm-3m

\[z = \frac{1}{2} \]

- rock salt
 - Fm-3m

\[z = \frac{1}{4} \]

- diamond
 - Fd-3m

\[z = 0 \]

- zinc blende
 - F-43m
- fluorite
 - Fm-3m
Views of the fluorite CaF$_2$ structure [Gerlach 1922]. Ca is 8-coordinate and F is 4-coordinate. Many oxides: UO$_2$, PrO$_2$, CeO$_2$, stabilized, cubic ZrO$_2$ and HfO$_2$...

Uses: CeO$_2$ is an oxide ion conductor. HfO$_2$ and ZrO$_2$ are important structural materials. UO$_2$ is “yellowcake”
Class 13: Fluorite, Pyrochlore, Murataite, ice

Stabilized zirconia:

- cubic
- tet
- mono baddeleyite

stabilization with Y_2O_3
Class 13: Fluorite, Pyrochlore, Murataite, ice

H. G. Scott,
Phase relationships in the zirconia-yttria system
JOURNAL OF MATERIALS SCIENCE 10 (1975) 1527-1535

Fluorite oxides are highly radiation tolerant because they are able to accommodate point defects easily: Science 289 (2000) 748.
Class 13: Fluorite, Pyrochlore, Murataite, ice

Fluorite

8 coordination + 8 coordination

\[\text{A}_2\text{B}_2\text{O}_8 \rightarrow \text{A}_2\text{B}_2\text{O}_7 \]

8 coordination + 6 coordination

Pyrochlore
Pyrochlore views:

$A_2B_2O_6O'$

B_2O_6

A_2O'

Stellated *Kagomé* lattice of B_4 tetrahedra. The central atom is O'. This is a motif found in spinel as well.
A wide variety of pyrochlore structures are known: A can be Ca, Cd, Tl, Pb, Bi, Ln etc. B can be transition metals as well as main group elements. The A and B sites can be mixed. O’ can be absent, or can be F⁻, OH⁻ etc.

Pyrochlores can be insulating, metallic, magnetic …

Class 13: Fluorite, Pyrochlore, Murataite, ice

Murataites:

The fluorite is a 3D chessboard of regular cubes. The pyrochlore has one half of the cubes replaced by octahedra, and one eights of the anions missing. The pyrochlore can be constructed by making the coloring the fluorite chessboard. This is a 2x2x2 ordering.

More complex 3x3x3 ordering gives the murataite.

Ice-I_h: $a = 7.82 \text{ Å} ; c = 7.36 \text{ Å} P6_3cm$

Proton ordering not proved

<table>
<thead>
<tr>
<th>Atom</th>
<th>#</th>
<th>OX</th>
<th>SITE</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>SOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>1</td>
<td>-2</td>
<td>6 c</td>
<td>0.3333</td>
<td>0</td>
<td>0.0625</td>
<td>1.</td>
</tr>
<tr>
<td>O</td>
<td>2</td>
<td>-2</td>
<td>6 c</td>
<td>0.6667</td>
<td>0</td>
<td>0.9375</td>
<td>1.</td>
</tr>
<tr>
<td>H</td>
<td>1</td>
<td>+1</td>
<td>6 c</td>
<td>0.3333</td>
<td>0</td>
<td>0.174</td>
<td>1.</td>
</tr>
<tr>
<td>H</td>
<td>2</td>
<td>+1</td>
<td>6 c</td>
<td>0.438</td>
<td>0</td>
<td>0.026</td>
<td>1.</td>
</tr>
<tr>
<td>H</td>
<td>3</td>
<td>+1</td>
<td>12 d</td>
<td>0.772</td>
<td>0.105</td>
<td>0.975</td>
<td>1.</td>
</tr>
</tbody>
</table>

Views of the ordered Bernal-Fowler structure. Hydrogens positioned through guesswork.
Class 13: Fluorite, Pyrochlore, Murataite, ice

Actual disordered structure of Ice-I_h: $P6_3/mmc$ hexagonal diamond lattice.

Ice-I_h: $a = 4.511(3)$ Å; $c = 7.346(3)$ Å $P6_3/mmc$
O 1/3 2/3 0.06226(8)
H1 1/3 2/3 0.178(3) [Occ. = 0.5]
H2 0.439(3) 0.878(3) 0.020(3) [Occ. = 0.5]

The Bernal-Fowler ice rules:
1) Each water molecule is oriented such that its two hydrogen atoms are directed approximately toward two of the four surrounding oxygen atoms (arranged almost in a tetrahedron).
2) Only one hydrogen atom is present on each O-O linkage.
3) Each oxygen atom has two nearest neighboring hydrogen atoms such that the water molecule structure is preserved.
Linus Pauling and residual entropy:

There are N molecules in a mole of ice. A given molecule can orient itself in six ways satisfying condition 2. However, the chance that the adjacent molecules will permit a given orientation is $1/4$; inasmuch as each adjacent molecule has two hydrogen-occupied and two unoccupied tetrahedral directions, making the chance that a given direction is available for each hydrogen of the original molecule $1/2$, and the chance that both can be located in accordance with the given orientation $1/4$. The total number of configurations for N molecules is thus $W = (3/4)^N = (3/2)^N$.

 degenerate configurations of hydrogen in ice

The residual entropy of ice, extrapolated to 0 K is $S = R\ln(3/2)$

Proved by Giaque.

Also see: Residual entropy of square ice, E. H. Lieb, Phys. Rev. **162** (1967) 162.

http://link.aps.org/abstract/PR/v162/p162
Class 13: Fluorite, Pyrochlore, Murataite, ice

How to order the hydrogens in ice: add OH$^-$

Phase transition near 80 K to an ordered structure with decreased residual entropy.

H$_2$O doped with 0.1 mol dm$^{-3}$ of KOH
Ordering hydrogens though pressure: The many phases of ice.

Ice-II has all H(D) atoms located at 80 K. The structure is rhombohedral.

Class 13: Fluorite, Pyrochlore, Murataite, ice

The spinel structure: $\text{MgAl}_2\text{O}_4 \quad Fd-3m$ (diamond) $a \sim 8.5 \, \text{Å}

<table>
<thead>
<tr>
<th></th>
<th>1/8</th>
<th>1/8</th>
<th>1/8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1/2</td>
<td>1/2</td>
<td>½</td>
</tr>
<tr>
<td>O</td>
<td>0.264</td>
<td>0.264</td>
<td>0.264*</td>
</tr>
</tbody>
</table>

* in MgAl_2O_4

A are tetrahedral with O and B are octahedral

“Starting with an array of oxygens in ccp, we insert Al in certain octahedral interstices and Mg in certain tetrahedral interstices, the selection of interstices being made in such a way that the repeat distance along each axis is double what it would be for the ideal close packing…”

Megaw
Magnetism in spinels: Ferrimagnetism
In the spinel structure, unlike perovskite and pyrochlore, both A and B ions can be magnetic (1st row transition metals). They could with each other antiferromagnetically, but there is a net moment because they do not cancel one-another.

Magnetite or lodestone, from which the term magnetism derives, is actually a ferrimagnetic spinel.
Class 13: Fluorite, Pyrochlore, Murataite, ice

Spinel magnetism and ice:

“The octahedral sites in the spinel structure form one of the anomalous lattices in which it is possible to achieve essentially perfect short-range order while maintaining a finite entropy. In such a lattice nearest-neighbor forces alone can never lead to long-range order, while calculations indicate that even the long range Coulomb forces are only 5% effective in creating long-range order. This is shown to have many possible consequences both for antiferromagnetism in "normal" ferrites and for ordering in "inverse" ferrites.”

The spinel B sites form a network of corner-connected tetrahedra. Antiferromagnetism is *frustrated*.
Class 13: Fluorite, Pyrochlore, Murataite, ice

Getting rid of frustration: Structural distortions in ZnCr$_2$O$_4$ and ZnV$_2$O$_4$:

Class 13: Fluorite, Pyrochlore, Murataite, ice

Spin ice in pyrochlores: Dy$_2$Ti$_2$O$_7$