The innovation engine for new materials

Stereo- and Regioselective Cyclopolymerization-Derived Poly(diynes): Gadgets in Polymerization Catalysis or Useful Conductive Materials?

Seminar Group: 


Prof. Michael R. Buchmeiser


Institute of Polymer Chemistry, University of Stuttgart
Institute of Textile Chemistry and Chemical Fibers, Denkendorf, Germany


Friday, March 23, 2012 - 2:00pm


MRL Room 2053

While conjugated polymers can be prepared by many means, chain growth polymerization techniques allow for high-molecular weight polymers and good control over the polymerization itself. The metathesis-based cyclopolymerization of 1,6-heptadiynes and 1,7- octadiynes offers a unique access to poly(acetylene)-type polymers with excellent solubility and stability. During the last decade, the fundamental aspects of both regio- and stereoselectivity in cyclopolymerization have been successfully addressed, allowing for a precise control of the final polymer structure.1-6 The switch from Schrock- to Grubbs-type initiators was not only a change of paradigm in initiator reactivity and selectivity, but also opened the door to more robust polymerization setups, allowing for the synthesis of poly(ene)s and poly(ene)-based materials under ambient conditions or in water. This talk will address the fundamentals of cyclopolymerization with both Mo- and Ru-based alkylidenes and the structural prerequisites of both the initiators and the monomers to accomplish high regio- and stereoselectivity. Back-up by DFT calculations will be provided. Selected structure-dependant properties will be outlined where applicable. Finally, the use of the thus prepared poly(ene)s, e.g., as conductive supports for heterogeneous electrocatalysis or conductive fibers will be presented.4-18

(1) Fox, H. H.; Wolf, M. O.; O'Dell, R.; Lin, B. L.; Schrock, R. R.; Wrighton, M. S. J. Am. Chem. Soc. 1994, 116, 2827-­‐2843 (2) Schattenmann, F. J.; Schrock, R. R.; Davis, W. M. J. Am. Chem. Soc. 1996, 118, 3295-­‐3296 (3) Schrock, R. R.; Tonzetich, Z. J.; Lichtscheidl, A. G.; Müller, P.; Schattenmann, F. J. Organometallics 2008, 27, 3986-­‐3995 (4) Anders, U.; Nuyken, O.; Wurst, K.; Buchmeiser, M. R. Angew. Chem. Int. Ed. 2002, 41, 4044-­‐4047. (5) Anders, U.; Nuyken, O.; Wurst, K.; Buchmeiser, M. R. Macromolecules 2002, 35, 9029-­‐9038 (6) Anders, U.; Wagner, M.; Nuyken, O.; Buchmeiser, M. R. Macromolecules 2003, 36, 2668-­‐2673 (7) Anders, U.; Nuyken, O.; Buchmeiser, M. R. J. Molec. Catal. A: Chem. 2004, 213, 89-­‐92 (8) Buchmeiser, M. R. Adv. Polym. Sci. 2005, 176, 89-­‐120 (9) Buchmeiser, M. R.; Schmidt, C.; Wang, D. Macromol. Chem. Phys. 2011, 212, 1999-­‐2008 (10) Halbach, T. S.; Krause, J. O.; Nuyken, O.; Buchmeiser, M. R. Macromol. Rapid Commun. 2005, 26, 784-­‐790 (11) Krause, J. O.; Nuyken, O.; Buchmeiser, M. R. Chem. Eur. J. 2004, 10, 2029-­‐2035 (12) Kumar, P. S.; Wurst, K.; Buchmeiser, M. R. J. Am. Chem. Soc. 2009, 131, 387-­‐395 (13) Mayershofer, M.; Nuyken, O.; Buchmeiser, M. R. Macromolecules 2006, 39, 3484-­‐3493 (14) Mayershofer, M. G.; Nuyken, O.; Buchmeiser, M. R. Macromolecules 2006, 39, 2452-­‐2459 (15) Naumann, S.; Unold, J.; Frey, W.; Buchmeiser, M. R. Macromolecules 2011, DOI: 10.1021/ma201749n (16) Naumov, S.; Buchmeiser, M. R. Organometallics 2011, in press (17) Vygodskii, Y. S.; Shaplov, A. S.; Lozinskaya, E. I.; Vlasov, P. S.; Malyshkina, I. A.; Gavrilova, N. D.; Kumar, P. S.; Buchmeiser, M. R. Macromolecules 2008, 41, 1919-­‐1928 (18) Krause, J. O.; Zarka, M. T.; Anders, U.; Weberskirch, R.; Nuyken, O.; Buchmeiser, M. R. Angew. Chem. Int. Ed. 2003, 42, 5965-­‐ 5969.