Varian Solution NMR Automation Procedure
(VNMRS Machines running VNMRJ 4.2 under CentOS 6.8)

Jerry Hu, x7914, jghu@mrl.ucsb.edu
Shamon Walker, x3248, shamonwalker@mrl.ucsb.edu
Materials Research Laboratory, UCSB
Version 1.3, Last Modified Wednesday, Jan. 14th, 2019
Safety Issues

⚠️ If you, or people working with you, have magnetic metal implants, please consult your doctor for possible effect of magnetic field;

⚠️ For those who have pacemakers, please stay away from NMR magnets;

⚠️ Remove from your pocket anything ferromagnetic or vulnerable to magnetic field:
 - Your wallet, bank cards, credit cards, and any cards with magnetic stripes;
 - Electronics: cell phone, mp3, ipod, etc.;
 - Mechanic watches;
 - Keys and other magnetic items.

Table of Contents

I. Facilities Billing System (FBS) .. 3
II. Sample preparation .. 4
III. Sign onto Logsheet .. 4
IV. Start VNMRJ Software .. 4
V. Preparation: Load Samples into Auto-Sampler ... 5
V. 1H and 13C NMR Setup and Data Acquisition ... 7
VI. Finishing up ... 13
VII. Data Processing Workstation .. 14
VIII. Appendices ... 15
 1. Requirements for Access to the MRL NMR at CNSI ... 15
IX. NMR Basic Principles .. 16
I. Facilities Billing System (FBS)

To Schedule time and to use the instrument computer a FBS account is required. After training you will receive an invite for FBS or if you already have a FBS account the 400MHz DNP calendar will be added to it.

The instrument time is billed through FBS. Your FBS time = your recharged time. Recharge is calculated at an hourly rate. For current recharge rates go to the MRL website, http://www.mrl.ucsb.edu/sites/default/files/mrl_docs/rechargerate.pdf

- To begin an instrument session, you must log onto FBS first and either click on Start Timer if a reservation has already been made or select Walk-Up.

 To do so use the FBS designated computer in the lab or any internet connected device, and navigate to http://ucsb.fbs.io

- Now you can log onto your account on the instrument computer. Remember to log off your computer account when finished.

- Once the session is finished you must log into your FBS account and click Stop Timer. This will stop your FBS time. If you do not do this you could incur extra charges.

- The paper log sheet by the instrument is used as back up for the FBS system. Remember to mark you time, recharge number, and any notes or problems you would like to convey, feel free to use as many lines on the page as needed to be clear.

⚠️ No shows will be charged 75% of the scheduled time. If you cannot use your reserved time cancel it.

⚠️ FBS records the billable time as the longer time between the scheduled time and the time used. So if your scheduled time is longer than the actual time on the instrument then the scheduled time will be charged.
II. Sample preparation

1. NMR tube parameters:
 - 5mm O.D. (outer diameter)
 - 7 or 8 inch length
 - Tubes must be 500MHz grade or higher.

2. Sample Parameters:
 - Concentration: >0.1 mM and >50mM for H and 13C, respectively,
 - Volume: ~ 0.6 ml (or >4 cm in height for 5 mm tubes).

Samples are dissolved in deuterated solvents for three purposes:

i. Deuteration removes solvent 1H signals which would otherwise dominate the 1H spectrum.
ii. Deuterons provide a lock signal.

³ Lock is a deuterium NMR process that the spectrometer uses to prevent the magnetic field from changing during the course of nmr experiments, thus locking the spectrometer.
iii. Deuterons provide an internal reference for the spectra of 1H, 13C, 29Si, 31P, etc., rendering addition of reference standards such as TMS unnecessary.

⚠️ Label your samples with your name and your advisor’s name. This helps us take care of unknown samples.

III. Sign onto Logsheet

Enter
1. your name
2. your advisor’s name and department
3. your start time
4. (Do this at the end of experiment: your stop time and duration of experiment)
5. (Do this at the end of experiment: Status of instrument and report problems if any)

IV. Start VNMRJ Software

1. Make sure that the spectrometer is idle by looking at the computer. If yes, proceed to Step 2 below (if no, either wait, talk to the user, or do something else)
2. Login into your NMR account:
3. Double click on the VNMRJ icon on the desktop, the last VNMRJ layout from your previous login session will appear.
V. Preparation: Load Samples into Auto-Sampler

1. Put your sample in a green spinner, measure depth with the golden depth gauge or the rack for spinners, and clean the bottom half of the sample tube with a napkin while holding the top half of the tube;

2. (Important information) Slot 12, aligned with the yellow triangle label at the bottom front of the sampler, is reserved for the standard idle sample (pure CDCl₃). Don’t load any sample into this slot.

 The standard idle sample will be loaded into the magnet automatically at the end of an automation run.
3. Go to the magnet and load your samples onto the sampler in the clockwise order: the 1st sample goes to slot 1, the 2nd to 2, the 3rd to 3, and so on.

⚠️ Be very careful to align the sample tube with the slot holes when removing or loading samples.
V. 1D 1H and 13C NMR Setup and Data Acquisition

1. Choose New automation run from the Automation menu to create a new automation session.

2. Click on New study in the Study Queue panel to go to the “Submit mode”. You will create ONE “New Study” for every sample you have.

3. In the Horizontal Panel, click Start to show the “Sample Info” page below.

 ![Start → Sample Info page](image)

 - Fill out the Sample name box with a meaningful name for the sample (Letters and Numbers ONLY plus underscore _). No spaces and special characters.
 - Choose the Solvent your sample is using.
 - The rest of the text boxes are optional.
 - Tune the probe:
When to check the Tune box:

- When running any other nuclei than 1H
- When aqueous solvents are used
- When salt concentration is high
- When running variable temperature experiments

If you would like to do NMR on 13C, 11B, 19F, 29Si, 31P, etc., please come talk to Shamon (CNSI Room 1528) for complete instruction.

4. Select experiments with double-clicks from the lists under **Experiment Selector** in the vertical panel of VNMRJ window. To add NMR experiments to the **Study Queue**, double-click the desired experiments.
To delete an experiment from the Study Queue, right-click and select DELETE.

If other 1D NMR’s and 2D NMR’s are to be run, do basically the same thing.

5. Double click on node **PROTON_001_day[0:24]** in the **Study Queue** to load parameters for 1H. If successful, you will see a new graph in the NMR Data Display area and the pages associated with the **Acquire** tab in the Horizontal Panel, as shown below.

Change **Number of scans** and **Relaxation delay** as necessary by clicking on the **Acquire** tab and then on **Default H1**.

Acquire tab ➔ Default H1 section

6. Do the same for 13C: double click on node **CARBON_001_day[8:40]** in the **Study Queue** to load parameters for 13C.

7. In the Horizontal Panel, click on the **Acquire** tab and then on **Default C13** to show the default 13C parameters. Change **Number of scans** and **Relaxation delay** as necessary.
8. Click on at the top left corner of the Graphics Display area and then on the numbered circle where the 1st sample is located (slot 1) in the tray display to have it selected: (i): and toggles the tray display and NMR data display)

![Diagram of tray displaying numbered circles]

9. Click on to start data acquisition. The auto-sampler will start changing samples by lifting up the CDCl3 standard from the magnet, rotating counter-clockwise, and loading the sample in the 1st slot to the magnet. Followed by auto-tune, auto-lock, gradient-shim, and data acquisition.
Color codes in the tray panel:

- Sample Active
- Sample in Queue
- Sample Finished
- Sample with Error

• To stop a running experiment and move on to the next one in the queue, use Stop-Save-Resume or Stop-Discard-Resume under the Automation → Automation Controls menu.

• To abort a whole automation run, use Abort Automation and then Resume Automation (or the machine will hang in the automation and nobody can use it) under the Automation → Automation Controls menu.

10. While waiting for all experiments for Sample 1 to finish, you may setup the experiments for Samples 2, 3, etc. by clicking on as necessary and then repeating steps 3 to 11 above to create a new Study Queue for a new sample.

11. To view progress of experiments or process the finished experiments, look in the Study Queue window and make sure “Spectrometer” is checked:
Same color codes as in the tray display: finished, running, and waiting.

You don’t have to wait until the whole Study Queue (sample) finishes in order to process data. For example, you can process the Proton data while waiting for Carbon to end by double clicking the Proton node PROTON_001.

To toggle between the normal graphics display and the tray display, click on or near the top-left corner of the graphics display area.

14. At the end of the Automation Run, the sample tray will rotate multiple times to Sample Position #12. It will load the IDLE sample into the magnet automatically.

*** IMPORTANT: Open all completed experiment files to verify that there were no problems with data acquisition!
VI. Finishing up

⚠️ YOU ARE NOT FINISHED WITH THE SPECTROMETER UNTIL YOU DO THE FOLLOWING.

a. Make sure that the IDLE sample in Position #12 has been loaded.
b. Exit VNMRJ by clicking the X in the upper right of the screen.

c. Log off your account: in the bottom left corner of screen click on the logout button and hit Log Out in the popped up window.

d. **Important:** On the logsheet, record your stop and duration times, and the spectrometer status. Report problems if any.

e. Remove your samples from the lab and clean the space you have used.

f. **STOP YOUR TIMER!**
VII. Data Processing Workstation

- Please go to NMR Processing Room (CNSI Room 1522) and refer to the BLUE Procedure Manual for processing.
VIII. Appendices

1. Requirements for Access to the MRL NMR at CNSI

You have to pass the mini quiz within one month after training in order to be qualified for access to the NMR facility of MRL, which includes:

- Key Card for Lab & Building:
 1. Pass the MRL safety training;
 2. Fill out the CNSI access form: http://www.cnsi.ucsb.edu/facilities/building_services/access/access_application.pdf
 3. Take the form to Sylvia in 2066G, MRL

- Web Scheduling Account

- NMR Account

These requirements apply to both on- and off-campus users.
IX. NMR Basic Principles

1. Spin

*Spin is a quantum mechanical phenomena that has no physical analog in classical physics. However, it will be helpful to visualize it as a small bar magnet that precesses about an axis.

*The existence of spin angular momentum is inferred by experiments, such as the Stern-Gerlach experiment, in which particles are observed to have angular momentum that cannot be solely accounted for by orbital angular momentum alone.

*Electrons, protons, and neutrons all have a value of spin +/- ½.
2. Common NMR Nuclei

<table>
<thead>
<tr>
<th>Nuclei</th>
<th>Unpaired Protons</th>
<th>Unpaired Neutrons</th>
<th>Net Spin</th>
<th>γ (MHz/T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>42.58</td>
</tr>
<tr>
<td>2H</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6.54</td>
</tr>
<tr>
<td>31P</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>17.25</td>
</tr>
<tr>
<td>33Na</td>
<td>1</td>
<td>2</td>
<td>3/2</td>
<td>11.27</td>
</tr>
<tr>
<td>14N</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3.08</td>
</tr>
<tr>
<td>13C</td>
<td>0</td>
<td>1</td>
<td>1/2</td>
<td>10.71</td>
</tr>
<tr>
<td>19F</td>
<td>1</td>
<td>0</td>
<td>1/2</td>
<td>40.08</td>
</tr>
</tbody>
</table>

Larmor Frequency Equation:

$$\nu = \gamma B_o$$

where γ is the gyromagnetic ratio (specific to each nuclei) and B_o is the magnetic field strength.

3. Energy Level Diagram
4. cw NMR

5. Magnetization

Alignment of nuclei in a magnetic field

6. Pulsed NMR, Relaxation, and Detection