RET Summer 2013

RET Participant: Brendan Carroll
Location: Dr. Joel Rothman’s Lab
UCSB Department of Molecular Cellular and Developmental Biology

Mentor:
Dr. Pan Young Jeong

C. elegans

Dr. Joel Rothman
C. elegans: A Model Organism for Research

Ideal subject for genetics research;

- Life span 2-3 weeks
- Adults 1mm
- Transparent
- RNAi (introduced via inoculated bacteria)
- Genome completely mapped
- Hermaphroditic

INTERESTING FACTS:

- Survives -80°C for 10 years
- Survived 2003 space shuttle Challenger disaster
- Descendants of the Challenger survivors traveled to space on the Endeavour in 2011
Life Cycle of *C. elegans*
Pathway to Apoptosis (programmed cell death) discovered in *C. elegans*

- **CED-9**
- **CED-4**
- **CED-3**
- **Mitochondrion**
- **EGL-1**
- **CED-9 inactivation**
- **CED-4**
- **CED-4**
- **CED-3**

Cell Death

- **Cancer**
- **Genetic birth disorders**
- **Parkinson’s disease**

PCD model in C. elegans Diagram by Dr. Pan Young Jeong
A. C. elegans

- Apoptotic stimuli
 - Egl-1 (BH3-only like)
 - CED-9 (Bcl-2-like)
 - CED-4 (Apaf-1-like)
 - CED-3 (Caspase-9-like)

B. Drosophila

- Apoptotic stimuli
 - Reaper (Mitochondrion)
 - Grim
 - Hid (IAP antagonists)
 - DIAP1 (Inhibitor of apoptosis)
 - Dronc (Caspase-9-like)
 - P35 (Apafl-1 related killer)
 - DriCE (Caspase-3-like)

C. Mammals

- Apoptotic stimuli
 - Bcl-2 (Family members)
 - HtrA2 (SMAC)
 - Cyto C
 - ARTS (IAP antagonists)
 - XIAP (Inhibitor of apoptosis)
 - APAF-1 (Scaffold protein)
 - Caspase-9 (Initiator caspase)
 - Caspase-7
 - Caspase-3 (Executioner caspases)

Apoptosis
This summer Dr. Pan-Young Jeong will have me help determine which conditions are the optimal heat shock and recovery times for identification of new CED-4 binding proteins, based on the identification of apoptotic cell corpses.

- ced-4(-); RNAi(some genes) mutant fertile phenotype will be compared with N2; RNAi(some genes) sterile phenotype

- The pHS; CED-4::FLAG is regulated by Heat-shock promoter (pHS).

- We can use anti-FLAG base on FLAG to help identify and coimmuno precipitate the CED-4 binding proteins (We don’t have anti-CED-4).
Somatic cell

Germ cell
No Heat

- ced-4(-);pHS::CED-4::FLAG

Heat

- ced-4(-);pHS::CED-4::FLAG

Cell corpse

 jr 431

 jr 431
Methods: Phase 1

1. Transfer (“pick”) jr431 AD worms to two plates (20 worms/plate)

2. Place plates in 30º C incubator for dependent time (5, 10, 20, 30, 60 mins)

3. Place one plate in 20º C incubator

4. Transfer worm plate from 30º C incubator and allow a “recovery” time of 2 hours in 20º C incubator

5. Prepare agarose slide for embryo viewing

6. Pick comma stage embryo from each plate

7. Observe and count the number of cell corpses on Zeiss high-resolution microscope (Differential Interference Contrast mode).
Cell Corpse Observations
Post-Heat Shock Treatment

Cell Corpses per Comma Cell Embryo

Total Embryos Observed: (10) (8) (9) (16) (13)
Next Step

- L4 stage ced-4(-);RNAi(some genes) worms treated to heat shock
- Examine “Death Zone” in gonad for apoptosis
- Fluorescent cell corpse
Methods: Phase 2

1. Select ("pick") jr431 AD worms in L4 stage.

2. Allow to grow overnight to “Young Adult” stage.

3. Soak worms in SYTO-12 (staining) solution.

4. Transfer approximately 30-40 worms to new plates

5. Heat shock each plate for various increments of time 0,10,20,30 and 60 min.

6. Incubate worms at 20º C for 2 hrs. to recover and purge SYTO-12.

7. Mount worms from each plate on agarose pad

8. Observe worms using the fluorescent component of microscope for detecting dead cells in the “death zone” / gonad area.
Results: Phase 2

- We tried varying amounts of SYTO-12 but were unable to generate any conclusive data.
- A variety of factors would have to be tested to determine how fluorescent marking could be used to accurately determine that the CED-4 gene is actively participating in apoptosis in the gonad region.
- (Variables: feeding time, recovery time, etc.)
How can we identify a mutant? (ex: ced-4)

Two Methods
1. Based on phenotype:

 WT embryo : cell corpse
 ced-4 : no cell corpse

2. Based on DNA sequence

 A. Simple method: by restriction enzyme digestion
 B. DNA sequencing
Wild Type

ced-4 mutant
PCR product of *ced-4* (1.266bp) in WT

- TTAA

PCR product of *ced-4* (1.266bp) in *ced-4(n1162)*

- TCaa

M : DNA size marker
1: N2 PCR product
2: *ced-4* (n1162) PCR product
3: Mse I in 2
4: Mse I in 1
Conclusions & Next Steps

- We were successful in activating the CED-4 function using the Heat Shock treatment.

- Using restriction enzyme digestion we also confirmed that the *ced-4(-)*;RNAi mutant fertile phenotype Dr. Jeong will be using is correctly identified.

- Dr. Jeong will continue studying the identification of new functions for CED-4 in embryogenesis and as a cell cycle “checkpoint”.
Acknowledgements

Many thanks to my mentor, co-interns, our lab manager for their help and to the Principal Investigator, for making the lab possible

Mentor
Dr. Pan
Young
Jeong

Intern
Dan Roman
Ame Thakrar

Lab Manager
Cricket Wood

Principal Investigator
Joel Rothman

RET Supervisor
Dr. Frank Kinnaman