Structural Study of Actin Bundles

Danielle Aranda
Mentor: Dr. Linda Hirst
Advisor: Professor Cyrus Safinya
Major Funding: National Science Foundation
UCSB Materials Research Lab
Vocabulary

- **F-actin**: Filamentous protein (10 µm long); part of the cytoskeleton; consists of G-actin subunits;

- **α-actinin**: “linker” protein; found in stress fibers, and pseudopodia; used to link F-actin fibers to create bundles

- **Bundles**: Cytoskeletal structures important in providing shape, support, and cell movement
Future Applications

- Can combine actin bundles into different shapes for use in tissue engineering
- Use network structure as a model for nanowires
-these applications are years down the line!
But Right Now…

- Study the nature of actin/α-actinin networks
 - Laser scanning confocal fluorescence microscopy
 - Fluorescence microscopy
- Study the structure of actin/polymer bundles
 - Small angle x-ray scattering
Polymerization of G-actin

1. Remove G-actin from freezer; defrost for 10min @ room temperature
2. Dilute to 1mg/ml with G-buffer and let sit for 20 min
3. Aliquot 10µl of G-actin and 1 µl of 1M KCl
4. Gently stir with tip of pipette; leave for 2.5 hours
5. Add 2.4 µl of 100 µM phalloidin
6. Actin should polymerize to 10 µm
Formation of Actin Bundles for Microscopy

1. Add set volume of 300mM KCl to make a final concentration of 100mM KCl

2. Add equal volume of α-actinin solution at a concentration to give a molar ratio of 1:5 (α:actin); wait 1 min

3. Add equal volume of F-actin, wait 5-30 min
Question #1

Once the bundles are formed, do the filaments move from bundle to bundle?
Question #1

Once the bundles are formed, do the filaments move from bundle to bundle?
1. Complexed red dyed and green dyed bundles separately.
2. Combined bundles, allowed bundles to sit at room temperature.
3. Sampled and observed after 5, 10, 15, 20, 30, 60, and 90 minutes.
4. Preliminary results seem to indicate mixing after 30 min.

5. Further experimentation:
 - True mixing or free proteins sticking onto existing bundles?

Photo by D. Aranda, 2003
Question #2

- *What structures are formed when F-actin is mixed with synthetic polymers?*
- *Provide better understanding behind F-actin and α-actinin bundle structure*
Preparing Actin/polymer Bundles

1. F-actin solution and polymer are combined and allowed to sit for 30 min.

2. Bundles are spun @ 11K rpm for 30 min. Pellet is created

3. Supernatant is removed

4. Pellet is removed

5. Pellet and supernatant are placed in capillary and sealed

6. Samples are labeled and placed in a small angle X-ray diffraction beam for two hours
Polymers Utilized

Lysine:
- 30K-70K mw *(similar weight to G-actin)
- 70K-150K mw
- 260K mw ** (similar weight to α-actinin)
- Oligo-4-lysine (0.4mM, 1mM)

Proteins 1,2,3
Small Angle X-Ray Scattering

- Bragg scattering: \(n\lambda = 2d\sin\theta \)
- \(Q = 2\pi/d \)
$Error = \pm 0.5\text{nm}$

100mMKCl 1:5 ratio

Lysine polymers and actin

Actin bundles made with Proteins 1 and 2

α-actinin peaks here

Protein 1

Protein 2

Lysine 260k

Lysine 30-70k

$\text{1mM Oligo-4-lysine}$

$d = 7.47\text{nm}$

$d = 7.13\text{nm}$

$d = 7.39\text{nm}$

$d = 7.66\text{nm}$

$d = 7.39\text{nm}$
Conclusions

- Peaks indicate filaments in bundles to be closer together (~7.5nm) than with α-actinin (35nm)
 - Peak position consistent with hexagonal packing
- Poly-lysines could be flexible and not rigid
- Therefore, they could have different bond formations than α-actinin

![Diagram of filaments and lysine monomers]
Reflections on My Experience

- Science is a process; the learning never ends
- The main branches of science (biology, physics, and chemistry) are intertwined
- The cell is a dynamic and complex unit of life
- Real science is not an exact science
 - Equipment breaks
 - Hypotheses are incorrect
 - Human error
Thank you

- Linda Hirst
- Wendy Ibsen, Elaine Haberer, Mike Carey
- Safinya Group
- Apprentice Researchers