Albumin-induced inactivation of lung surfactants

RET Intern: Danielle Petrey, funded by NSF
Mentor: Patrick Stenger
PI: Joe Zasadzinski
Funding: NIH
What is lung surfactant?

- Lipid and protein mixture lining the 600 million alveoli of the lungs
- LS modulates surface tension during breathing cycle; prevents alveolar collapse
- Reduces work of breathing
- Prevents water droplets from blocking airways

http://lungdiseases.about.com/od/generalinformation1/ss/resp_sys_tour_5.htm
Components of lung surfactant

- 35-40% dipalmitoyl phosphatidylcholine (DPPC), a phospholipid
- 30-45% other phospholipids
- 5-10% protein (SP-A, B, C, D)
- Cholesterols (neutral lipids)

http://persweb.wabash.edu/facstaff/fellers/image.html
What is surface tension?

- Tendency of molecules in a fluid to be pulled toward the center of the fluid
- Measured as energy/unit area (J/m²) or force across a line (N/m)
- Surface tension of water is 72 mN/m; with LS can drop to 2mN/m or lower
- Surface pressure (Π) = amount surface tension (σ) is lowered by surfactant film (Π = σ° − σ)

Notter, Robert. Lung Surfactants: basic science and clinical applications. Lung Biology in Health and Disease volume 149
Background

<table>
<thead>
<tr>
<th>NRDS</th>
<th>ARDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premature infants lack LS in NRDS (reduced lung compliance and oxygenation)</td>
<td>ARDS 1.5-8.4 cases/100,000; mortality 30%</td>
</tr>
<tr>
<td>Replacement LS reduces infant mortality due to NRDS from 165.2/100,000 (1979) to 24.6/100,000 (2000)</td>
<td>Variety of causes results in inactivation of LS</td>
</tr>
<tr>
<td>FDA-approved LS includes Survanta (bovine), Curosurf (porcine), and Infasurf (calf)</td>
<td>LS replacement unsuccessful in treating patients</td>
</tr>
<tr>
<td></td>
<td>Surface-active albumin (serum protein) is elevated in alveolar fluid of ARDS patients</td>
</tr>
</tbody>
</table>
Goals of project

- Identify a repeatable experiment to determine effect of albumin on model LS
- Explore different aspects of adsorption to interface
- Long term goal: design synthetic replacement LS
Methods: How we study surface tension

- Langmuir-Wilhelmy force balance and Teflon trough with expandable barriers

- Isotherms – varies pressure by expanding and compressing barriers to study behavior of surfactants

- Surfactant is spread on an aqueous subphase (from solvent or from solution)
Comparison of three different LS

1) 500uL Infasurf suspension

2) 20uL/7.5uL Infasurf, lyophilized and reconstituted in 2:1 CHCl₃:MeOH
 20 components (complex model including proteins)

3) 6uL simulated Infasurf (in CHCL₃:MeOH)
 lipids only, (simple model)
Results: Infasurf (aq) and inactivation

Inhibition results in:
1) lower surface pressure (inhibiting LS to lower surface tension)
2) low plateau
Inconsistency resulting from suspension delivery (expect concentration dependency)
Infasurf in solvent

- Same effect in small doses vs. aqueous
- Too much Infasurf at or near surface for albumin to interfere
- Repeatable but first cycle is hard to understand
Infasurf (solvent) monolayer and inactivation experiment

- Based on minimum molecular area (40Å²/mol), 7.5uL is a monolayer
- Lose plateau at 40mN/m
- Compare 2^{nd} cycles, 1^{st} cycles are odd
Simulated Infasurf and inhibition

Components: 45.7% DPPC
28.6% POPC
17.1% POPG
2.9% POPE
5.7% Cholesterol
Concentration inhibition study:
- max surface pressures decrease with increasing [albumin]
- plateau is lower with increasing [albumin]
Conclusions

- Infasurf inactivated entirely when spread by aqueous - (1000 µg)
- Infasurf not inactivated when spread from solvent (large concentrations) – (40 µg)
- Infasurf somewhat inactivated when spread from solvent (small concentrations)
- Simulated Infasurf lipids much more sensitive to Albumin → proteins prevent inactivation