Vanadium Nanoparticle Catalysis

UCSB MRL RESEARCH EXCHANGE TEACHER: ADAM GAMBOA

Visiting Scholar: Daniel Hirche
Principal Investigator: Mike Gordon, PhD

Funded UCSB MRL and US Dept. of Energy
Catalyst: (n) anything that speeds up a chemical rxn but isn’t consumed in the process

Examples of Catalysis

1. **Biochemistry**: enzymes speed up important rxns in the body
2. **Refineries**: metallic oxides are used crack long chain hydrocarbons into gasoline
3. **Automotive**: Catalytic converters aid in complete combustion of criteria pollutants (CO, unburned HC’s, NO, etc.)
Pathways for a Catalytic Reaction

http://www.chemgapedia.de/vsengine/vlu/vsc/de/ch/10/makrokinetik/einfuehrung_makrokinetik/einfuehrung_makrokinetik.vlu.html
Background: Bulk Catalysts vs. 2-D Catalysts

- Traditionally larger “bulk” catalysts are used
- **Bulk** catalysts require more material than nanoparticles
- More importantly **bulk** particles have different chemical properties than 2-D catalysts
- **2-D** catalysts behave chemically according to quantum mechanics
Motivation: Maybe nanoparticles are better catalysts?

- Enhanced catalytic properties
 - Higher Conversion/Selectivity
- Less costly
 - Less material costs
- Increased Value as conversion increases while costs of production decrease
Increased surface area per unit weight for nanoparticle substrates
Methods Overview

BET Measurements
- **Brunauer-Emmett-Teller**
- Aims to explain the adsorption of gas molecules on surfaces
- Determines the total surface area of a porous substrate (Outer area + pore area)
- Determines the pore volume

Catalyst Synthesis
- Precipitation, ultrasonication and polymerization methods
- Incipient wetness impregnation of V_2O_5 nanoparticles and bulk V_2O_5 on SiO_2 and TiO_2 substrates

Catalyst Testing
- Benchmark testing of substrates (SiO_2 and TiO_2)
- 0.5 wt % V_2O_5, 1.5 wt % V_2O_5, 3.0 wt % V_2O_5 samples
- Oxidative dehydration of methanol to formaldehyde
- Temperatures ranging from: 180 °C to 320 °C
BET: SiO$_2$ Adsorption/Desorption Isotherms

![Graph showing adsorption and desorption isotherms for SiO$_2$](image)

- **Adsorption N2**
- **Desorption N2**

The graph illustrates the volume adsorbed [cm3/g] as a function of the relative pressure p/p_0. The data shows the typical behavior of adsorption and desorption processes for silica dioxide (SiO_2).
0.5 g V_2O_5 powder is magnetically stirred into 20 mL of DI water. Then 10 mL of ethylene glycol is added. The mixture is autoclaved for 14 hours at 180 °C. The black precipitate is filtered and washed with water and EtOH. The pre-calcined sample is dried in air for 12 hr at 50 °C. The post-calcined sample is calcined in air for 1 hr at 400 °C. The yield is 92.4%.

Solvothermal rxn w/ calcination

0.77 g NH$_4$VO$_3$ + 1.25 g oxalic acid + 10 ml deionized water

35 ml Isopropanol is added then sol’n is centrifuged

Teflon lined stainless steel autoclave for 6 h @ 200 °C

Washed with DI water and EtOH Dried overnight then calcined for 2 hr @ 350 °C

Catalyst Testing: Compare rxn conversion using nanoparticle catalysts

- Catalyst of interest:
 - V_2O_5 nanosheets

- Reaction of interest:
 - Oxidative dehydration of methanol to formaldehyde
Special thanks to the bros that made it all possible...

Daniel Hirche
Visiting scholar from Munchen. Instrumental in keeping me guided through 5 weeks of intense research.

Mike Gordon, PhD
Talented principal investigator. Clear and articulate explanations of key concepts. Always there for his students. In touch with the spirit of grad school.

Frank Kinnaman
The man that got it all started. A great communicator and facilitator of talent. Thank you for placing me with the Gordon Lab.