Direct numerical prediction for the properties of complex microstructure materials

Andrei A. Gusev

Institute of Polymers, Department of Materials, ETH-Zürich, Switzerland

Outlook

- Unstructured mesh approach
 - Short fiber composites
 - Clay/Polymer nanocomposites for barrier applications
 - Voltage breakdown in random composites

- Regular grid approach
 - 3D X-ray micro-tomography
 - Aluminum infiltrated graphite matrix composites
 - Pglass/LDPE hybrid materials
 - Cellular materials
Short fiber composites

- Polymers have a stiffness of 1-3 GPa
 - glass fibers 70 GPa
 - carbon fibers 400 GPa

- Short fiber reinforced polymers
 - fiber aspect ratio 10-40
 - volume loading 5-15%

- Can be processed by injection molding on the same equipment as pure polymers

Gear wheel

Acceleration pedal (Ford)
Local fiber orientation states

- Non-uniform fiber orientation states
 ⇒ non-uniform local material properties
 - stiffness
 - thermal expansion
 - heat conductivity, etc.

- Area with a high degree of orientation

- Area with a low degree of orientation
Direct finite element predictions

- Periodic Monte Carlo configurations
 - with non-overlapping spheres
 - with non-overlapping fibers

- Unstructured meshes (PALMYRA)
 - periodic morphology adaptive
 - 10^7 tetrahedral elements
Validation

- Short glass-fiber-polypropylene granulate
 - Hoechst, Grade 2U02 (8 vol. % fibers)
 - injection molded circular dumbbells

- Image analysis
 - typical image frame (700x530 µm)

- Measured fiber orientation distribution
 - transversely isotropic
 - statistics of $1.5 \cdot 10^4$ fibers

- Measured phase properties
 - polypropylene matrix
 \[E = 1.6 \text{ GPa}, \quad \nu = 0.34, \quad \alpha = 1.1 \cdot 10^{-4} \text{ K}^{-1} \]
 - glass fibers
 \[E = 72 \text{ GPa}, \quad \nu = 0.2, \quad \alpha = 4.9 \cdot 10^{-6} \text{ K}^{-1} \]
 - average fiber aspect ratio $a = 37.3$
Validation

- Monte Carlo computer models
 - 150 non-overlapping fibers

- PJ Hine, HR Lusti, AAG

- AAG, PJ Hine, IM Ward
 Comp. Sci. Tecn. **2000**, 60, 535

- Fiber orientation distribution
 - compared to the measured one

- Effective properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Numerical</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_{11} [GPa]</td>
<td>5.14 ± 0.1</td>
<td>5.1 ± 0.25</td>
</tr>
<tr>
<td>α_{11} [$10^5 \cdot K^{-1}$]</td>
<td>3.1 ± 0.1</td>
<td>3.3 ± 1.5</td>
</tr>
<tr>
<td>α_{33} [$10^5 \cdot K^{-1}$]</td>
<td>11.7 ± 0.1</td>
<td>12.1 ± 0.2</td>
</tr>
</tbody>
</table>
Two step procedure

- Single fiber
 - unit vector $\mathbf{p} = (p_1, p_2, p_3)$

- System with N fibers
 - 2nd order orientation tensor
 $$ a_{ij} = \langle p_i p_j \rangle $$
 - 4th order orientation tensor
 $$ a_{ijkl} = \langle p_i p_j p_k p_l \rangle $$

- Step 1: System with fully aligned fibers
 - numerical prediction for C_{ijkl}, α_{ik}, ϵ_{ik}, etc.

- Step 2: System with a given fiber orientation state
 - orientation averaging
 - quick arithmetic calculation
Orientation averaging

- Reference system with fully aligned fibers
 - transversely isotropic

- A system with given a_{ij} and a_{ijkl}

- Effective elastic constants
 \[
 \langle \mathbf{C}_{\text{ref}} \rangle = \begin{pmatrix}
 C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \\
 C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\
 C_{12} & C_{23} & C_{22} & 0 & 0 & 0 \\
 0 & 0 & 0 & C_{44} & 0 & 0 \\
 0 & 0 & 0 & 0 & C_{66} & 0 \\
 0 & 0 & 0 & 0 & 0 & C_{66}
 \end{pmatrix}
 \]

- Effective elastic constants
 \[
 \langle \mathbf{C} \rangle = B_1 a_{ijkl} + B_3 (a_{ik} \delta_{jl} + a_{il} \delta_{jk} + a_{jk} \delta_{il} + a_{jl} \delta_{ik}) \\
 B_2 (a_{ij} \delta_{kl} + a_{kl} \delta_{ij}) + B_4 \delta_{ij} \delta_{kl} + B_5 (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})
 \]
 - B_i are related to the coefficients of \mathbf{C}_{ref}

 - Direct & orientation averaging estimates
 - agree within 2-3%
Maximum entropy structures

- For transversely isotropic samples
- As the trace of a_{ij} is 1, one needs only a_{11}
- Similarly, a_{ijkl} is solely determined by
- The entropy of a system
 \[S = -\sum_n p_n \log p_n \]
 p_n is probability that the system is in state n
 \[\theta_n \leq \theta \leq \theta_n + \Delta \theta_n \]
- Maximum of S under a given a_{11}
- Comparison with image analysis data
Complex shape parts

- Steel molds (dies) are expensive
 - on the order of $20k and more

- Before any steel mold has been cut
 - mold filling flow simulations

- To optimize mold geometry & processing conditions
 - gate positions
 - flow fronts
 - local curing
 - mold temperatures
 - cycle times
 - etc.

- Software vendors: Moldflow, Sigmasoft, etc.
 - full 3D flow simulations instead of 2½ D
Computer-aided design of short fiber reinforced composite parts

- Method

- Short fibers:
 Hine, Lusti, AAG, *Comp. Sci.Tecn.* 2004, 64, 1081

- Spin-off company: MatSim GmbH, Zürich
 - Palmyra by MatSim, www.matsim.ch

- Acknowledgements
 - Professor U.W. Suter, ETH-Zürich
 - Dr. P.J. Hine, IRC in Polymer Science & Technology, University of Leeds
 - Dr. H.R. Lusti, ETH-Zürich
 - Professor I.M. Ward, University of Leeds
Voltage breakdown in random composites

- Dielectric parameters of pure polymers
 - dielectric constants
 - voltage breakdown
 - determined by chemical composition
 - and processing route

- Putting metal particles into polymers
 - increasing dielectric constants
 - decreasing voltage breakdown
 - local field magnifications

- Periodic unstructured meshes
 - morphology-adaptive

- Voltage breakdown mechanism
 - localized damage: pairs, triplets, etc
 - percolating path
Numerical procedure

- Numerical set up
 - matrix: $\varepsilon_M = 1$ & $E_c = 1$
 - inclusions: $\varepsilon_i = 10^6$

- Apply a very small E
 - such that all local fields e are below E_c

- Gradually increase E
 - when somewhere in the matrix $e > E_c$
 - local voltage breakdown occurs
 - in the damaged sections, replace ε_M by ε_i
 - go on

- Computer model with 27 spheres
 - here, sphere volume fraction $f = 0.3$

- Numerical predictions
 - overall dielectric constant: $\varepsilon_{eff} = 2.54$
 - breakdown field: $E_{eff} = 0.084$
Numerical predictions

- Numerical estimates
 - sphere volume fraction $f = 0.1$

- Composite voltage breakdown
 - arrestingly, ensemble minimum values representative already with only 8 spheres

- Overall dielectric constants
 - remarkably, uniform RVE size is very small
 - ensemble vs. spatial averaging

- Variable sphere volume loadings

<table>
<thead>
<tr>
<th>f</th>
<th>ε_{eff}</th>
<th>E_{eff}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>1.37</td>
<td>0.12</td>
</tr>
<tr>
<td>0.3</td>
<td>2.57</td>
<td>0.03</td>
</tr>
<tr>
<td>0.5</td>
<td>5.12</td>
<td>0.008</td>
</tr>
</tbody>
</table>

- Technological aspects
 - relatively slow increase in ε_{eff}
 - rapid decrease in E_{eff}
Aluminium / Graphite Composites

- Squeeze casting process
 - graphite pre-form (porosity 14.5 vol-%)
 - infiltrated with aluminium melt (AlSi7Ba with 7 wt% Si & 0.25 wt% Ba)
- 3 phase composite: graphite (C), aluminium (Al), and pores
3D X-ray tomography

Swiss Light Source (SLS)

Beamlines at SLS

XTM (X-Ray Tomographic Microscopy)
- at Materials Science beamline of SLS
- beam energy of 10 keV
3D tomography microstructure

Pore

Al

C

200 x 600 x 600 pixels
pixel size = 0.7 µm

10 subvolumes:
25 x 25 x 25 pixel

10 subvolumes:
50 x 50 x 50 pixel

10 subvolumes:
100 x 100 x 100 pixel

9 subvolumes:
200 x 200 x 200 pixel
Effective conductivity

- FEM solution of Laplace’s equation
 \[\text{div} \sigma(r) \text{grad} \phi = 0 \]
 - for nodal potentials
 - with position dependent \(\sigma(r) \)

- Technicalities:
 - serendipity family linear brick elements
 - iterative Krylov subspace solver
 - \(\sigma_{\text{eff}} \) from a linear response relation

- Implementation
 - GRIDDER by MatSim GmbH

25 x 25 x 25 pixel model
Representative Volume Element Size

Pglass / Polymer hybrids

- Pglass: 0.5 SnF$_2$ + 0.2 SnO + 0.3 P$_2$O$_5$
 - $T_g \approx 150$ C
 - can be melt processed at ca. 200 C

- 50/50 (by volume) Pglass/LDPE hybrid
 - melt processed at about 200 C
 - J. Otaigbe of Univ. of Southern Mississippi
 - measured stiffness:
 - LDPE 0.2 GPa
 - Pglass 30 GPa
 - composite 1.2 GPa

→ Why is the composite stiffness so low ?
→ Is the microstructure co-continuous ?

3D tomography microstructure

- Numerical predictions for σ_{eff} assuming
 - either $\sigma_1 = 0$ and $\sigma_2 = 1$
 - or $\sigma_1 = 1$ and $\sigma_2 = 0$
- Both phases percolate
 \Rightarrow co-continuous microstructure

400 x 275 x 200 pixels
pixel size $\sim 5 \, \mu m$
Property predictions (GRIDDER)

<table>
<thead>
<tr>
<th></th>
<th>LDPE</th>
<th>Pglass</th>
<th>Effective</th>
</tr>
</thead>
<tbody>
<tr>
<td>E [GPa]</td>
<td>0.2</td>
<td>30</td>
<td>7.1</td>
</tr>
<tr>
<td>α [10^{-6}/K]</td>
<td>150</td>
<td>12</td>
<td>58</td>
</tr>
</tbody>
</table>

- Predicted E is 7 times larger than the measured one
- Hypothesis: disintegration of P_{glass} phase
 - under the influence of residual thermal stresses
- Critical sections:
 - those with large von Mises stress & negative pressure
Residual thermal stresses

- Local stress tensor

\[
\sigma = \begin{pmatrix}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{12} & \sigma_{22} & \sigma_{23} \\
\sigma_{13} & \sigma_{23} & \sigma_{33}
\end{pmatrix}
\]

- Pressure

\[
p = \frac{1}{3} (\sigma_1 + \sigma_2 + \sigma_3)
\]

- Von Mises stress

\[
\tau = \sqrt{\frac{1}{2} \left[(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 \right]}
\]
Stiffness of closed cell foams

- Real foams: \(\frac{E}{E_s} = C \left(\frac{\rho}{\rho_s} \right)^n \)
 - with \(1 < n < 2 \)
- Kirchhoff plate theory
 - \(n = 1 \) reflects wall stretching
 - \(n = 3 \) reflects wall bending
- Sparse form solver
 - implemented in GRIDDER

\[\rho = \text{CEE} \]
Materials with cellular microstructure

- Understanding structure – property relationships
 - both 3D X-ray tomography and model microstructures
 - mechanical, thermal, electrical, and other properties
Conclusions & Perspectives

- Unstructured mesh approach (PALMYRA)
 - Linear tetrahedral elements
 - Remarkably efficient for object based representations
 - Currently: spheres, spheroids, platelets, and spherocylinders
 - Locking problems with fluids and rubbers

- Regular grid approach (GRIDDER)
 - Linear brick elements
 - Very large grids, 10^9 pixels and more
 - Appropriate for ordinary solids, rubbers and fluids
 - Property estimation companion for SCFT simulations

- For more on PALMYRA & GRIDDER technologies, visit www.matsim.ch