Beyond the Mean Field: Efficiently Implementing the Complex Langevin Method

Erin M. Lennon
Glenn H. Fredrickson

Department of Chemical Engineering
University of California, Santa Barbara

Complex Fluids Design Consortium Annual Meeting
January 23, 2006
Disorder in Self-Assembly

- Goal: Increase epoxy toughness
- Amphiphilic block copolymers
- 5% copolymer loading yields 40x to 70x increase in fracture resistance

Dean et al; *Macromolecules* 2003
Mean Field Results

- Model as a blend of copolymer and homopolymer
- Hypothetical micellar region

Matsen; Phys. Rev. Letters 1995
Mean Field Assumption

- Assume a single configuration dominates the partition function
- Fluctuations are suppressed

\[Z = \int D[W] e^{-H[W]} \approx e^{-H[W^*]} \]
Complex Langevin Solution

- Stochastic sampling of fields
- Simultaneous excitation and relaxation

\[
\frac{\partial}{\partial t} W(r,t) = -\lambda \frac{\delta H[W]}{\delta W(r,t)} + \eta(r,t)
\]

\[
\langle \eta(r,t) \rangle = 0
\]

\[
\langle \eta(r,t) \eta(r',t') \rangle = 2\lambda \delta(r - r') \delta(t - t')
\]
Numerical Limitations

- System stability and accuracy require restrictively small step sizes
Novel Method: SDE Splitting

- 2nd order Semi-Implicit method

\[
dx = (A(x) + B(x))dt + \eta
\]

\[
x^{n+1} = x^{n} + \frac{\Delta t}{2} \left[A_{x^{n+1}} + B_{\tilde{x}} + A_{x^{n}} + B_{x^{n}} \right] + \eta
\]

\[
\tilde{x} = x^{n} + \Delta t \left[A_{x^{n}} + B_{x^{n}} \right] + \eta
\]
Novel Method: SDE Splitting

- Example:

\[
\begin{align*}
W_{n} &= W_{n} + \Delta t \frac{\delta H}{\delta W} + \eta \\
\hat{W}_{n+1} &= \frac{1}{2 + \Delta t \hat{g}_T} \left(\hat{W}_n + \hat{\eta} + (\Delta t \hat{g}_T + 1)\hat{W}_n + \Delta t \frac{\delta \hat{H}}{\delta \hat{W}} \right)
\end{align*}
\]
Method Comparison

![Data comparison chart showing results for Modified First Order Scheme and Second Order Scheme across different timestep values. The chart includes error bars for each data point.]
Diblock Copolymer Model

- Pressure and Difference Fields

\[H[W_{\pm}] = C \left[\int dr [(2f - 1)W_+ - iW_- \\
+ W_-^2 (\chi N)^{-1}] - V \ln Q \right] \]
Appearance of Micelles

Density Profile

![Density Profile Image]
Shift in the Order Parameter

C = 240
Shift in the Order Parameter

\[C = 60 \]
Shift in the Order Parameter

C = 30
Future Work

- Continue work on efficient numerical methods
- Extend simulations into larger systems
- Address physical phenomena intractable by current methodology
Diblock/Homopolymer Blends

A-B Diblock
A Homopolymer

Matsen; *Phys. Rev. Letters* 1995
Micelles in Disorder

- New ODT
- Unbinding transition

Critical Micelle Concentration

SCFT

Experiments

Fluctuations
Diblock/Homopolymer Blend

- Diblock as Surfactant
- Ternary Blend
 - A-B Diblock
 - A Homopolymer
 - B Homopolymer

SCFT Experiments

Fluctuations
Microemulsions

- Fluctuation Destroy Unbinding Transition
- Narrow Region!

Bates et al; *PRL* 1997
Stabilizing Microemulsions

- Polydispersity
 - A-B asymmetries
 - Chain Length Variations

Hillmyer et al; *J Phys Chem B* 1999
Stabilizing Microemulsions

Homopolymers

Diblocks
- Varied Length
- Symmetric
- Varied Composition

Hillmyer et al; *J Phys Chem B* 1999
Summary

- Improved Numerical Methods
 - Full Complex Langevin Dynamics tractable
- Application to Neat Diblock System
- Future Work with Diblock Homopolymer Blends
Acknowledgements

- Hector Ceniceros
- Carlos Garcia-Cervera
- Kirill Katsov
- Eric Cochran
- George Mohler