Pathways to Crystal Nucleation and Growth

Andrea Robben Browning
Glenn H. Fredrickson
Michael F. Doherty

Department of Chemical Engineering
University of California Santa Barbara

Complex Fluids Design Consortium Annual Meeting
January 23, 2007
Presentation Overview

• Motivation

• Part 1: Model Particles
 – Simulations
 – Comparison with colloidal experiments

• Part 2: Real Molecules
 – Initial seeded simulations
Motivation for Project

• Organic crystals are found in everyday products and structure is critical to their usefulness

• Many molecules can form two or more solid structures (polymorphs)

• Polymorphs can have different properties (solubility, strength, etc.)

• Nucleation is the initial stage of polymorph formation
 – Polymorph development not always determined by seed*

• Most nucleation is heterogeneous
 – What is learned in homogeneous nucleation can be applied to heterogeneous nucleation

• Explore nucleation using
 – Simulations

Part 1: Model Particles

• Hard-core screened coulomb pair potential

\[
\frac{u}{\varepsilon} = \begin{cases}
\exp[-K\sigma(r/\sigma - 1)] & \text{if } r > \sigma \\
\infty & \text{if } r < \sigma
\end{cases}
\]

– Spherically symmetric

• Molecular dynamics simulations
 – Seeded initial conditions
 – Unseeded, homogenous nucleated simulations

• Direct comparison with experimental data (Weitz & coworkers)
Model particle parameter space

Coulomb limit

Experimental conditions

Simulation Details

• Molecular dynamics simulations
 – NVT ensemble
 – 10717 to 32000 particles
• Seeded initial conditions
 – FCC or BCC polymorph
 – Spherical shape
 – Variable seed size
 – Structure of particles after box is fully crystalline is compared to structure of the seed
 – Results of simulations that are homogenously nucleated from fully random initial condition are shown later
Seed Evolution

Fluid

FCC

BCC

packing fraction (η) vs. screening length ($1/\kappa\sigma$)
Seed Evolution

- Packing fraction (η)
- Screening length ($1/\kappa\sigma$)

Fluid

- FCC seed-FCC crystal

FCC

BCC
Seed Evolution

- Screen length ($1/\kappa\sigma$)
- Packing fraction (η)

Graph showing:
- BCC Seed-BCC crystal
- FCC seed-FCC crystal

Fluid phase transition points:
- BCC
- FCC
Seed Evolution

- Packing fraction (η)
- Screening length ($1/\kappa\sigma$)

Fluid

- BCC Seed-BCC crystal
- BCC Seed-FCC crystal
- FCC seed-FCC crystal

Graph showing the relationship between packing fraction (η) and screening length ($1/\kappa\sigma$) for different crystal structures.
Seed Evolution - Low Temperature

$T^* = 0.05$

- BCC Seed-BCC crystal
- BCC Seed-FCC crystal
- FCC seed-FCC crystal

Fluid

BCC

FCC

screening length ($1/\kappa \sigma$)

packing fraction (η)
Effect of Undercooling

Screening length = 0.1

Dimensionless Temperature (T^*) vs. packing fraction (η)

- BCC Seed-FCC crystal
- BCC Seed-BCC crystal
- FCC Seed-FCC crystal

Melting line

Fluid

FCC
Initial Conclusions

- BCC can transform into FCC during crystal evolution
- FCC not observed to transform into BCC
- Undercooling can effect how polymorph develops
 - Seeding desired polymorph does not guarantee growing desired polymorph
 - Consistent with Yu’s observation of D-mannitol and D-sorbitol
Comparison with Experiments

- Nucleation of colloidal particles observed by Weitz & coworkers using laser scanning confocal microscopy
 - Melting and freezing packing fractions comparable at $T^*=0.125$ and screening length=0.05
- Same simulation procedure as in previous work but without seeding- homogenous nucleation
- Can compare simulations and experiments
 - Shape
 - Size
 - Structure
Model particle parameter space

Experimental conditions

Comparison with Experiments

Nucleus 1
Side view
Top view

Nucleus 2

Nucleus 3

Nucleus 4
Comparison with Experiments

Nuclei from Weitz et. al. experiments

FCC/HCP structure

Nuclei from simulation

FCC/HCP structure

Results of Comparison with Experiments

- Particles in nuclei are primarily FCC coordinated
- No spherical nuclei observed
 - More elliptical in shape
- Nuclei have rough surface
- Minimum size for growth between 60 and 135 particles
 - Agrees with experimental result of between 60 and 160 particles
- Findings agree with experiments
Part 1: Future Plans

- Surface stress and surface energy calculation
- Develop predictive simulations for colloidal experiments
- Explore the effect of seed size on polymorph selection
- Improved model for crystal nucleation useful in process and product design
 - Be able to select and control the polymorph that is formed
Part 2: Real Molecules

- Same techniques developed for particle study can be applied to molecular study
- First system studied is stearic acid in hexane
- Stearic acid has 4 polymorphs (A,B,C,E)
- System exhibits a change in stable polymorph
 - C above 32°C, B below
 - Change yields many conditions (temperature and concentration) of interest for polymorph selection

Form C in hexane

Polymorph C: Crystal Description

Long Axis View
6 molecules in form of
2 - complete bilayers, 2 - \(\frac{1}{2} \) bilayers

Perpendicular view
6 and 12 molecules in other directions
Simulation Details

- Molecular dynamics simulations
 - NPT ensemble
 - Gromacs software
- Explicit hexane solvent
- United atom model
 - CH$_3$, CH$_2$ groups
 - Individual atoms in carboxylic acid group
- Current running conditions
 - 33 ºC
 - 0.073 mole fraction (128 g/L)
 - Solubility of polymorph C at 47 ºC
 - Seed size 2 bilayers, 10 and 11 molecules in other directions
 - ~400 stearic acid molecules
Initial Condition
Initial Condition - Seed

128°
Seed after 1.5 ns
Part 2: Future Plans

• Questions raised by initial simulation
 – What is the minimum seed size that does not dissolve?
 – How does shape effect the minimum seed size?
 – What does structure change indicate?
 • Possible transition to another polymorph

• Future work
 – Smaller and larger seeds of different shapes
 – Higher concentrations or lower temperatures
 – Compare with polymorph B seeds
Acknowledgements

• U.S. National Science Foundation Graduate Research Fellowship
• Doherty Group
 – Ryan Snyder, Jacob Sizemore, Derek Griffin, Mike Lovette
• Fredrickson Group
 – Erin Lennon, Won Bo Lee, Dr. Kirill Katsov
• Dr. Joan-Emma Shea and Dr. Patricia Soto Becerra