Structural Sensitivities in Bimetallic Catalysts for Electrochemical CO₂ Reduction Revealed by Ag–Cu Nanodimers

Jianfeng Huang,‡ Mounir Mensi,§ Emad Oveisi,§ Valeria Mantella,† and Raffaella Buonsanti⁎†§

Abstract: Understanding the structural and compositional sensitivities of the electrochemical CO₂ reduction reaction (CO₂RR) is fundamentally important for developing highly efficient and selective electrocatalysts. Here, we use Ag/Cu nanocrystals to uncover the key role played by the Ag/Cu interface in promoting CO₂RR. Nanodimers including the two constituent metals as segregated domains sharing a tunable interface are obtained by developing a seeded growth synthesis, wherein preformed Ag nanoparticles are used as nucleation seeds for the Cu domain. We find that the type of metal precursor and the strength of the reducing agent play a key role in achieving the desired chemical and structural control. We show that tandem catalysis and electronic effects, both enabled by the addition of Ag to Cu in the form of segregated nanodomain within the same catalyst, synergistically account for an enhancement in the Faradaic efficiency for C₂H₄ by 3.4-fold and in the partial current density for CO₂ reduction by 2-fold compared with the pure Cu counterpart. The insights gained from this work may be beneficial for designing efficient multicomponent catalysts for electrochemical CO₂ reduction.

Introduction

Electrochemical CO₂ reduction is an emerging research area due to its potential of converting greenhouse gas CO₂ into useful feedstocks and fuels while storing intermittent renewable energy. Among the various CO₂ reduction products, C₂ hydrocarbons and alcohols (e.g., C₂H₄, C₂H₅OH) have attracted much attention because of their higher energy densities compared with C₁ products (e.g., CO, formate, CH₃OH). While high conversion efficiencies have been achieved via device engineering, more fundamental understanding is required for rationally designing CO₂ reduction catalysts with enhanced intrinsic activity and selectivity.

Cu is the most promising monometallic catalyst for electroreducing CO₂ to multiamer nanodimer products, albeit it does not possess optimum levels of activity and selectivity. A surge of interest has therefore appeared in modifying Cu catalysts via judiciously manipulating its physicochemical properties, such as sizes, shapes, chemical states, grain boundaries, and stabilities, to gain insights into the effect of these parameters on the catalytic behavior and thereby ideally to improve the catalytic performance. More recently, the addition of a second metal to Cu was suggested as another useful means to tune the Cu selectivity and reactivity through tailoring the binding strength and/or binding configuration of intermediates on the catalytic surfaces. Enhancements in the electrochemical CO₂ reduction reaction (CO₂RR) have been observed on various Cu-based alloys, including enhanced production of CO on CuAu and CH₄ on CuPd, and C₂H₄OH on CuZn. Ag has been shown to substantially activate Cu toward the formation of multiamer products by mechanisms of either tandem catalysis, in the case of macroscopically phase segregated domains, or strain induced suppression of hydrogen evolution reaction (HER), in the case of surface alloys. The results obtained from Cu-based bimetallic catalysts evidence that neighboring Cu atom ensembles are pivotal to the C–C coupling that is the key step to C₂ products. However, to date, most of the aforementioned bimetallic catalysts have been limited to alloys or to systems without either adequate preservation of Cu ensembles or control on the ensemble size. Thus, it can be anticipated that the study of metallic nanodimers (NDs) that combine the incorporation of a second metal while preserving the Cu ensemble would be highly relevant to CO₂RR and particularly beneficial to the fundamental understanding of the conversion of CO₂ to C₂ products. Having this in mind, the challenge becomes the synthesis of such structures. Indeed, while the ability to tailor make bimetallic nanoparticles (NPs) in a wide range of compositions and geometries is of the utmost importance to tune their optical and catalytic properties, their synthesis in a controlled fashion is still challenging because of the lack of design principles which allow the desired structures to be accessed in a predictive manner.

Received: November 18, 2018
Published: January 18, 2019
Here, we synthesize Ag–Cu NDs with tunable domain size by developing a seeded-growth approach through colloidal chemistry, wherein presynthesized Ag NPs act as nucleation seeds for the growth of the Cu domain. We find the rational selection of the metal precursor and the reducing agent to be particularly crucial to attain the metallic NDs and their relative counterparts, i.e., Cu NPs and Ag NPs, in a controlled fashion. As a result of the synthetic tunability, we are able to reveal the role of the segregated Ag and Cu nanodomains and of their shared interface in promoting \(\text{C}_2 \text{H}_6 \) products in Ag–Cu NDs, together leading to a 3.4-time enhancement in the Faradaic efficiency (FE) for \(\text{C}_2 \text{H}_4 \) and to a 2-time enhancement in the CO\(_2\)RR partial current density in comparison with the Cu NPs counterpart. The enhancement is the result of tandem catalysis and electronic effect, both induced by the coupling of nanoscale segregated Ag and Cu domains through an interfacial region. The fundamental insights gained from the structure/property relationships will facilitate defining the design principles for superior CO\(_2\)RR catalysts including multiple components which are the direction to take to break the existing scaling relationships.\(^{38}\)

EXPERIMENTAL SECTION

Chemicals

Copper(II) acetate monohydrate (Cu(OAc)\(_2\), H\(_2\)O, 99.0%), copper(II) acetate (Cu(OAc), 97%), silver trifluoroacetate (CF\(_3\)COOA\(_\text{g}\), 99.99%), d- (+)-glucose, (99.5%), sodium ascorbate (99%), toluene (anhydrous, 99.8%), potassium carbonate (K\(_2\)CO\(_3\), 99%), and NaF (5 wt %) were purchased from Sigma. Silver nitrate (AgNO\(_3\), 99.9995%) was bought from ABCR. Isopropanol (99.5% anhydrous) was obtained from Fluorochem. All chemicals were used as received without further purification. All aqueous solutions were prepared using deionized (DI) water with a resistivity of 18.2 M\(\Omega\) cm.

Materials Synthesis

Ag NPs Synthesis. Ag NPs were synthesized by sequentially adding 0.045 g of HDA, 3.43 mL of H\(_2\)O, 1.2 mL of AgNO\(_3\) (100 mM), and 0.37 mL of glucose (1 M) into a 40 mL vial at room temperature. After being magnetically stirred for 5 h, the mixture was heated in an oil bath at 100 °C for 1 h. The vial was then removed from the oil and cooled naturally. The particles were washed with water by centrifugation two times (13 300 rpm, 10 min) and then either dried in vacuum and redispersed in toluene for CO\(_2\)RR or directly redispersed in H\(_2\)O (9 mL) for seed growth of Ag–Cu NDs.

Cu NPs Synthesis. Cu NPs were synthesized by sequentially adding 0.15 g of HDA, 4.55 mL of H\(_2\)O, and 0.075 mL of Cu(OAc)\(_2\), (100 mM) into a 40 mL vial at room temperature. After the mixture was magnetically stirred for 12 h, 0.3 mL of ascorbic acid (1 M) was added under stirring, and the resulting mixture was heated in an oil bath at 150 °C for 1 h. The vial was then removed from the oil and cooled naturally. The particles were washed with water and collected by centrifugation two times (13300 rpm, 10 min), then either dried in vacuum and redispersed in toluene for CO\(_2\)RR or directly redispersed in H\(_2\)O (9 mL) for seed growth of Ag–Cu NDs.

Ag–Cu NDs Synthesis. Ag–Cu NDs were synthesized using a seed-mediated method. Three different NDs with varied mass ratios of Cu to Ag, i.e., Ag\(_7\)–Cu\(_{13}\) NDs, Ag\(_2\)–Cu\(_{11}\) NDs, and Ag\(_{10}\)–Cu\(_{9}\) NDs, corresponding to the Cu mass percentages of 28.6%, 52.4%, and 76.2%, respectively, were achieved by adjusting the amount of the above-synthesized Ag NPs that were used as seeds and the reaction time. Specifically, 0.3 g of HDA, 0.3 mL of Cu(OAc)\(_2\) (100 mM), 8.9 mL of H\(_2\)O, and a specific amount of Ag NPs in H\(_2\)O (Ag\(_{10}\)–Cu\(_{9}\) NDs: 200 \(\mu\)L; Ag\(_8\)–Cu\(_{11}\) NDs: 200 \(\mu\)L; Ag\(_7\)–Cu\(_{13}\) NDs: 400 \(\mu\)L) were sequentially added into a 40 mL glass vial. The resulting mixtures were kept stirred for 5 h, followed by an addition of 0.6 mL of ascorbic acid (1 M) under stirring. Finally, the vials were placed in an oil bath at 150 °C for a certain period of heating time (Ag\(_{10}\)–Cu\(_{9}\) NDs: 20 min; Ag\(_8\)–Cu\(_{11}\) NDs: 12.5 min; Ag\(_7\)–Cu\(_{13}\) NDs: 8 min). After being washed with water and collected by centrifugation two times (13300 rpm, 10 min), the particles were then dried in vacuum and redispersed in toluene for CO\(_2\)RR.

Preparation of the Ag/Cu Mixtures

Ag–Cu mixtures were prepared by physically mixing a specific amount of the above-synthesized Ag NPs and Cu NPs according to the desired ratio of Cu to Ag.

Characterization

Electron Microscopy. Transmission electron microscopy (TEM) images were acquired on an FEI Tecnai-Spirit at 120 kV. High-resolution TEM (HR-TEM), high-angle annular dark-field scanning TEM (HAADF-STEM) images and X-ray energy dispersive (EDX) elemental maps were acquired on an FEI Tecnai-Osiris at 200 kV. High-resolution HAADF-STEM images were taken on a double Cs-corrected FEI Titan Themis 60-300 operated at 300 kV. Samples were prepared by depositing one drop of the toluene solution containing the nanoparticles on the surface of carbon-coated gold grids (Ted Pella, Inc.).

UV–vis Spectroscopy. UV–vis extinctions were performed in transmission mode using a PerkinElmer Lambda 950 spectrophotometer equipped with a deuterium lamp as a light source for the ultraviolet range and a tungsten halide lamp as a light source for the visible and infrared range, and a PMT with a Peltier-controlled PbS detector. Samples were prepared by dispersing nanoparticles in DI H\(_2\)O.

X-ray Diffractionometry (XRD). XRD measurements were conducted on a BRUKER D8 Advance instrument with Cu K\(_\alpha\) radiation equipped with a Bruker LynxEye one-dimensional energy dispersive detector. Samples were prepared by drop-casting nanoparticles on low background silicon holders.

X-ray Photoelectron Spectroscopy (XPS). XPS data were collected on a PHI VersaProbe II; scanning XPS microprobe (Physical Instruments AG, Germany) with a monochromatic Al K\(_\alpha\) X-ray source operating at 24.8 W under ultrahigh vacuum conditions. Particle film samples were prepared by drop-casting nanoparticles on silicon substrates.

Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). ICP-OES was performed on an Agilent 7500 model to determine the Cu and Ag concentration. Five standard solutions of Cu and Ag were prepared to obtain the calibration curve used to determine the concentrations of the digested nanocrystal solution. The sample solution was prepared by dissolving the nanocrystals in 70% HNO\(_3\), followed by the addition of a specific amount of DI water until the solution reaches the 2% acid content needed for the analysis.

Electrocatalytic Measurements. Electrode Preparation. Glassy carbon plates (2.5 cm \(\times\) 2.5 cm, Type 2, Alfa Aesar) loaded with electrocatalysts served as the working electrode. Before loading electrocatalysts, glassy carbons were typically polished using a 1 μm diamond, followed by a rinse with Milli-Q water, ultrasonication in acetone for 5 min and in hexane for 5 min, and blowing dry with N\(_2\). Typically, working electrodes (cathode electrodes) were prepared by evaporating catalyst inks within a circular area of 1.5 cm\(^2\) on the glassy carbon plates. Catalyst inks were prepared by thoroughly mixing nanoparticles (15 μg) in toluene (25 μL) with a NaI/isopropanol mixture (volume ratio: 1:1, 15 μL). Before measurements, the electrodes were stored in a N\(_2\) glovebox. Platinum foil and a Ag/AgCl electrode (leak free series, Innovative Instruments, Inc.) were used as the counter electrode and reference electrode, respectively.

CO\(_2\) Electrolysis. Electrocatalytic measurements were performed with a potentiostat (Biologic SP-300) in a custom-built gastight three-electrode cell. A selenium anion exchange membrane was used to separate the anodic and cathodic compartments. Each compartment was filled with a CO\(_2\)-saturated KHCO\(_3\) solution (2 mL, 0.1 M) as an electrolyte. Such a KHCO\(_3\) solution was prepared by bubbling a freshly prepared K\(_2\)CO\(_3\) solution (0.05 M) with CO\(_2\) for 30 min. The working electrodes were held for 1 h at different constant biases (−0.9 V, −1.0 V, −1.1 V, −1.2 V, −1.3 V, −1.4 V vs Reversible Hydrogen Electrode (RHE)) using chronoamperometry. The solution resistance was determined and compensated using the built-in MIR function of the potentiostat, compensating for 85% of the resistance.
Product Analysis. For gas product analysis, a gas chromatograph (GC, SRI instruments) equipped with a HayeSep D porous polymer column, thermal conductivity detector, and flame ionization detector was used. Ultrahigh purity N2 (99.999%) was used as a carrier gas. The concentration of gaseous products was determined using calibration curves from standard gases. For liquid product analysis, high-performance liquid chromatography (HPLC) on an UltiMate 3000 instrument from Thermo Scientific was used. During electrolysis, CO2 was constantly bubbled through the electrolyte to prevent depletion of CO2 in the electrolyte and to allow continuous analysis of gaseous products via a GC. The CO2 flow was controlled by a mass flow controller (Bronkhorst), and the flow rate was 5.5 sccm, measured from the exhaust of GC using a flowmeter (Ellutia, 7000 Flowmeter). During electrolysis, the CO2 with gaseous products was allowed to flow directly into the gas sampling loop of the GC for online gaseous product analysis, which took 10.5 min for each run of analysis. The liquid products were collected from the electrolyte after electrolysis and analyzed by the HPLC. Calculations of FE for gaseous products and liquid products are presented in the Supporting Information (SI).

RESULTS AND DISCUSSION

The synthesis of the Ag−Cu NDs was achieved by the seeded-growth approach wherein preformed ~25 nm Ag NPs were used as nucleation seeds for the Cu domains. This technique was chosen for synthesis because of the demonstrated capability to afford superior compositional and morphological tunability. Briefly, the ligand (HDA), the metal precursor (Cu(OAc)2), the solvent (H2O), and the seeds (Ag NPs) were sequentially added into a glass vial. After the mixture was stirred for 5 h, the reducing agent (ascorbic acid) was added under stirring. Finally, the vial was placed in an oil bath of 150 °C for a certain period of time depending on the domain size (details in the Experimental Section).

Figures 1 and 2 report the complete characterization of the synthesized Ag/Cu nanocrystals by various electron microscopy techniques, UV−vis extinction spectra, and XRD. From TEM of the Ag−Cu NDs (Figure 1b), uniform calabash-like nanostructures are observed with two discrete spherical domains of distinct contrasts. Each domain is within the size range of 25−30 nm. The HRTEM image (Figure 1e) shows a clear interface between the two domains, which are both multiply twinned. HAADF-STEM (Figure 2a), which is sensitive to the atomic number of the specimen, confirms the presence of two domains containing different elements (i.e., Ag appears brighter than Cu2), in the same nanocrystal. The corresponding EDX maps reveal a segregated distribution of Ag and Cu, suggesting that the higher- and lower-contrast domains are comprised of Ag and Cu, respectively. ICP-OES reports the mass ratio of Cu to Ag to be 1.1, consistent with the similar size of the two domains. This dimer is hereafter denoted as Ag1−Cu1.1 NDs. As control samples, spherical Ag NPs (Figure 1c, f and Figure 2b) and Cu NPs (Figure 1d, g and Figure 2c) that have a similar size (25−30 nm) to the domains in the Ag1−Cu1.1 NDs and contain multiple nanotwins (crystallite size around 10−15 nm) were also successfully produced, as demonstrated by the same electron microscopy techniques (TEM, STEM, EDX) as those applied for Ag1−Cu1.1 NDs. Consistent with the insights from the electron microscopy, the XRD pattern (Figure 2d) of the Ag1−Cu1.1 NDs shows two distinct sets of diffraction peaks arising from the fcc structure of Ag and Cu, indicative of the formation of segregated pure metallic Cu and Ag phase in the...
dimer nanocrystals and discarding the idea of a AgCu alloy. Furthermore, the crystallite size of Cu and of Ag is found to be \(\sim 15\) nm and \(\sim 12\) nm, respectively, consistent with the TEM observation that the particles are multiply twinned. The unique structural features of the NDs are reflected in their optical properties as well. As shown in the UV−vis spectra (Figure 2e), the bimetallic Ag\(_{1}\)−Cu\(_{1.1}\) NDs exhibit two peaks at \(\sim 403\) nm and \(\sim 580\) nm, which blue-shifts by \(\sim 11\) nm and red-shifts by \(\sim 7\) nm with respect to the single characteristic surface plasmon resonance (SPR) peak of monometallic Ag NPs (\(\sim 414\) nm) and Cu NPs (\(\sim 573\) nm), respectively. Since the size and shape of Ag NPs remain unchanged during the seeded-growth of Ag\(_{1}\)−Cu\(_{1.1}\) NDs, the blue shift of the SPR peak experienced by the Ag domains might indicate a charge transfer between Cu domains and Ag domains, as will further be discussed later. All together the characterization results in Figures 1 and 2 confirm that we successfully synthesized monodispersed Ag/Cu nanocrystals with a tunable structure between the bimetallic Ag−Cu NDs and the monometallic Cu NPs and Ag NPs.

Such an exquisite manipulation of the nanocrystal synthesis was not trivial. Previously, Ag−Cu NDs were synthesized using a one-pot synthesis method.\(^4^1\) However, the method yielded large dimers (>100 nm) of varied sizes and shapes; also it was unsuccessful in producing NP counterparts of similar physicochemical properties as reference materials. More recently, galvanic exchange between Cu NPs and Ag salts has been employed to synthesize Ag−Cu nanocrescents.\(^4^2\) Nevertheless, as the Ag nanocrescents grow, the Cu NPs tend to be encapsulated in Ag shells to form a core−shell structure. By contrast, the seeded-growth method employed in this work, being based on the overgrowth of Cu on presynthesized Ag NPs, has great advantages such as controlling both the size and the structure of the dimer particles. A fine-tuning and optimization of the synthetic parameters, including the reducing agent, reaction temperature and time, metal precursors, and amount of ligands (Figures S1−S3), was necessary to attain the desired structures. Particularly, we found ascorbic acid to be the reducing agent with adequate reducing power. Weaker reducing agents, such as glucose, were unable to reduce CuII ions completely, which resulted in the formation of big Cu\(_2\)O particles. Increasing the oxidizing ability of Cu precursor by using copper(I) acetate (CuOAc) still produced similar large Cu\(_2\)O particles. Elevating the temperature could not be used to enhance the reaction kinetics, as a temperature higher than 150 °C often caused a breakage of the vial cap. Stronger reducing agents, such as sodium ascorbate, by contrast, induced a fast nucleation and as a result generated very small particles. In addition, it is noteworthy that the utilization of Cu(OAc)\(_2\), instead of CuCl\(_2\), which was commonly used in the literature,\(^4^1,4^3,4^4\) as the Cu precursor, is essential for a successful seeded growth involving Ag NPs as seeds, because the anion Cl\(^−\) would etch...
Ag NPs in the presence of oxygen particularly at high temperature.

The catalytic activity of nanoparticles is highly dependent on their physicochemical attributes, such as the size, shape, crystalline structure, and surface chemistry. To identify the effect arising solely from changes in the structure, it is important to maintain other parameters identically. Because of the success to obtain all the Ag/Cu nanocatalysts in a similar reaction environment involving the same binding ligands, we sought to investigate how the unique dimer structure promotes the CO$_2$RR. In addition to the electrocatalyst itself, the success to obtain all the Ag/Cu nanocatalysts in a similar reaction environment involving the same binding ligands, we sought to investigate how the unique dimer structure promotes the CO$_2$RR. In addition to the electrocatalyst itself, the catalytic performance in CO$_2$RR is highly susceptible to the operating conditions, such as the composition of the electrolyte and the electrochemical cell design. For example, the use of a gas-diffusion layer in the cell and the high concentration of KOH as the electrolyte usually give rise to extremely high current densities up to 750 mA cm$^{-2}$, which, however, might impose limited mass transport, thereby masking the intrinsic activity of the electrocatalysts. In this work, we therefore adopted a reported design of liquid cell with adequate mixing of a 0.1 M KHCO$_3$ electrolyte and flat glassy carbon as catalyst support, which yield relatively low geometric current densities. Moreover, we preferred to skip any thermal or chemical treatment for ligand removal to avoid changes to the intrinsic structure. Since the same ligands functionalize the surface of of the Ag and of the Cu in the NPs and in the NDs, we do not expect them to confer different catalytic behavior to the studied samples.

We first examined the FE for each product, the results of which are presented in Figure 3a–c and Figure S4. For pure Ag NPs, the CO$_2$RR products are CO and formate, and the FE for CO reaches a maximum of 50–60% in the potential range −0.9 V to −1.1 V (Figure 3a). Using Cu NPs as the electrocatalyst increases the number of products and generates more reduced products, such as CH$_4$, C$_2$H$_4$, etc., at the expense of CO. The highest FE for C$_2$H$_4$ is around 12% achieved at −1.1 V (Figure 3b). These results are consistent with previous reports on pure Cu NPs and Ag NPs. Interestingly, when Ag NPs and Cu NPs are combined together in the form of NDs, CO is significantly suppressed when compared with Ag NPs, while C$_2$H$_4$ is drastically boosted in comparison with Cu NPs at −1.1 V (Figure 3c). Such an enhanced FE of ~40% for C$_2$H$_4$ obtained from the Ag$_x$–Cu$_{1−x}$ NDs corresponds to a 3.4-fold enhancement over that from Cu NPs and is even comparable with the performance of state-of-the-art Cu nanocubes wherein the presence of (100) facets drives the selectivity.

We also assessed the catalytic activity of the three types of nanocrystals under identical reaction conditions through the current densities normalized by the electrochemically active surface area (ECSA, Figure S5). As shown in Figure 3d, Ag NPs exhibit lower overall activity than Cu NPs. In stark contrast, when Ag is combined with Cu in the form of Ag–Cu NDs, the activity is significantly enhanced over either single component. However, as the overall current density includes also the current contribution from HER, we decomposed it into individual partial current density for H$_2$ and CO$_2$RR products separately, to determine which catalyst performs better for CO$_2$RR. The results were reported in Figure 3e, and interestingly, a similar trend was observed for CO$_2$RR activity, suggesting that the observed increase in the overall activity correlates with the increased CO$_2$RR activity. As an example, the partial current density at −1.1 V for Ag$_{1−x}$–Cu$_{1−x}$ NDs is also 2 times higher than that for Cu NPs. In addition, the Ag$_{1−x}$–Cu$_{1−x}$ NDs also exhibit a 4.2-fold higher C$_2$H$_4$ mass activity than Cu NPs (Figure 3f). The mass activity reported in Figure 3f has some interesting implications which will be discussed later. Taken together, these results conclude that Ag$_{1−x}$–Cu$_{1−x}$ NDs, when compared with their constituent counterparts, not
only enhance the activity toward CO$_2$RR but also improve the selectivity for the C$_2$H$_4$ product.

Such a pronounced enhancement in both the selectivity and activity achieved simply by the dimerization of Ag NPs with Cu NPs motivates us to seek out the mechanism by which Ag increases the performance of CO$_2$RR when interfaced with Cu at the nanoscale. In order to do so, we synthesized NDs with variable size of the Cu domains so to control the extension of the interfacial region (Figure 4). We prepared two kinds of dimers, one with a smaller Cu size and thus smaller interfacial area (i.e., Ag$_{1-x}$Cu$_x$ NDs: Figure 4a) and one with a bigger Cu size and thus larger interfacial area (i.e., Ag$_{1-x}$Cu$_{2-x}$ NDs: Figure 4c) compared to the original Ag$_{1-x}$Cu$_{1-x}$ NDs (Figure 4b).

As suggested by earlier studies, adsorbed CO is a crucial intermediate for the formation of C$_2$H$_4$. Ag is well-known to generate more CO than Cu at a given potential, and this is consistent with our results. Therefore, one possibility is that in the NDs the Ag domain supplies a high flux of CO to the adjacent Cu domain, which sequentially transforms CO into C$_2$H$_4$ (i.e., tandem catalysis). To test this hypothesis, we performed one control experiment in which a physical mixture of Ag NPs and Cu NPs (i.e., Ag+Cu Mixture) was employed as the electrocatalyst. An ~1.5-fold enhancement in the FE for C$_2$H$_4$ was observed over that of Cu NPs (Figure 5), which validates the contribution of Ag to promoting the formation of C$_2$H$_4$ through CO tandem reaction, yet it does not account for the full improvement. We also verified that the additional enhancement observed for the Ag$_{1-x}$Cu$_{1-x}$ NDs when compared with the Ag+Cu Mixture is not caused by the Cu domains and Ag domains being in closer proximity to each other, as increasing the particle areal density did not lead to a noticeable increase in the FE for C$_2$H$_4$ (Figure 5). In addition, when analyzing the CO and C$_2$H$_4$ mass activity of the Ag/Cu nanocrystals (Figure 5f), while the Ag$_{1-x}$Cu$_{1-x}$ NDs exhibited a much higher production rate of C$_2$H$_4$ than Cu NPs, they still showed a comparable CO production rate, further confirming that the tandem transformation of CO is not the only mechanism behind the C$_2$H$_4$ enhancement. When testing the NDs with different interfacial areas reported in Figure 4, a
nonmonotonic trend was found with the highest FE for C₂H₄ being achieved over the dimers of similar domain size (i.e., Ag₁−Cu₁₁ NDs). In the Ag₁−Cu₄₄ NDs, the combination of a less extended interface and of the smaller Cu domain is accompanied by a reduced C₂H₄ and more predominant CO production (Figure 5 and Figure S8 for other products). The Ag₁−Cu₃₂ NDs exhibit a substantial C₂H₄ formation, yet not as high as expected based on the extended interfacial area and on the larger Cu domain size (the C₂H₄ selectivity of Cu NPs has been found to increase with size⁸). Rationally designed control experiments evidenced that this behavior is not related to a reduced contribution of the tandem effect due to the Ag domain being smaller than the Cu domain (Figure S9). Overall, the results reported in Figure 5 not only confirm the importance of the interface in dictating the FE for C₂H₄ but also suggest the existence of a delicate balance between the tandem effect and the extension of the interface.

Previously, HER suppression due to compressive strain induced by surface alloying Ag with Cu has been hypothesized to account for the enhanced selectivity for multicarbon products in bimetallic alloy catalysts.⁶⁶ However, in the case of our NDs, compressive strain is unlikely to be present because an abrupt and clean rather than an alloyed interface is observed with very few (if any) Cu and Ag atoms interdiffused at the interface (Figure 6a and after electrochemical experiments in Figure S10). The Fast Fourier Transform (FFT) analysis in the interfacial region confirms the presence of segregated Cu and Ag (Figure 6a). Consistently, we did not see a shift in the position of the primary reflections of Cu or Ag from the XRD pattern (Figure 2d), which would be expected for strained domains. Interestingly, as mentioned above, we observed a blue shift of the SPR peak of Ag in the Ag₁−Cu₁₁ NDs relative to the SPR peak of Ag in the Ag NPs (Figure 2e), and such a shift increases with the Cu−Ag interfacial area (Figure 6b). This blue shift of the SPR peak can be ascribed to the increased electron density in the Ag domain of the dimer, as other parameters (size, shape, dielectric environment, etc.), which affect the SPR position, are all constant. In addition, it is noteworthy that the increased extinction at around 450 nm is caused by the interband transition of metallic Cu, rather than the formation of a Ag/Cu alloy interface (Figure S11).

Interestingly, as mentioned above, we observed a blue shift of the SPR peak of Ag in the Ag₁−Cu₁₁ NDs relative to the SPR peak of Ag in the Ag NPs (Figure 2e), and such a shift increases with the Cu−Ag interfacial area (Figure 6b). This blue shift of the SPR peak can be ascribed to the increased electron density in the Ag domain of the dimer, as other parameters (size, shape, dielectric environment, etc.), which affect the SPR position, are all constant. In addition, it is noteworthy that the increased extinction at around 450 nm is caused by the interband transition of metallic Cu, rather than the formation of a Ag/Cu alloy interface (Figure S11). Therefore, we can deduce that in the NDs the Ag domain serves as electron acceptor of Cu domain, a phenomenon that is possible only if there is a shared interface and it is not possible in the physical mixture. In fact, since Cu has a higher electron chemical potential than Ag, such an electron transfer is thermodynamically favorable, which drives the transfer of electrons from Cu to Ag as it has also been demonstrated in other studies.⁴¹,⁵⁹,⁶⁰ To confirm the electron transfer process, we further collected the XPS spectra on Cu NPs, Ag NPs, Ag₁−Cu₄₄ NPs, Ag₁−Cu₁₁ NPs, and Ag₁−Cu₃₂ NPs (Figure 6c, Figure S12). As the size of the Cu domain increases, the binding energies of the Ag 3d core levels in the Ag−Cu NDs continuously blue-shift (Figure 6c) and concomitant changes are observed also in the XPS and Auger spectra of the Cu (Figure S12), which unambiguously verifies the electron transfer from the Cu domain to the Ag domain. Such a phenomenon allows transformation of a local effect into a global effect and thus impacts the catalytic behavior of the whole Cu domain when interfaced with the Ag domain by enhancing its intrinsic activity toward C₂H₄. Electron-depleted Cu has been already shown to increase the binding of CO on the catalyst surface, which in turn facilitates the coupling of CO into C₂H₄.⁶¹ Furthermore, it has been found that there is an optimum in the electron density of Cu which maximizes C₂H₄ production.⁶¹ In our NDs, the extent of the interface...
through the size of the Cu domain allows the partial Cu oxidation state to be modulated and the optimal conditions (interface + copper domain size) to promote CO–CO dimerization to be attained. This explains the interface-dependent FE observed on the three different dimers with the maximum C2H4 production reached for the Ag1–Cu1.1 NDs (Figure 5). In the future, the synthesis of bimetallic heterostructures where the extent of the interface can be varied while preserving the optimal domain size (e.g., by changing the center-to-center distance in NDs) can be targeted to further explore the interface effect now revealed.

■ CONCLUSION

In summary, we have developed a novel seeded-growth colloidal approach to tailor make Ag–Cu NDs with different Cu domain sizes (Ag1–Cu0.4, Ag1–Cu1.1 and Ag1–Cu1.2), and achieved synthetic control over the respective counterparts, Cu NPs and Ag NPs. As a general lesson in NP synthesis, the proper selection of the metal precursor and the reducing agent is crucial to achieve the desired bimetallic NDs wherein the presence of an interface accounts for charge transfer phenomena which modify the optoelectronic properties achieved synthetic control over the respective counterparts, Cu NPs and Ag NPs. As a general lesson in NP synthesis, the proper selection of the metal precursor and the reducing agent is crucial to achieve the desired bimetallic NDs wherein the presence of an interface accounts for charge transfer phenomena which modify the optoelectronic properties compared with the two isolated metals. The synthetic strategy here reported can potentially be extended to other dimer structures-modulating agents (e.g., thiols) might be needed to promote dimerization.35,62 These Ag/Cu nanocrystals served as perfect model catalysts to study the compositional and structural sensitivities of CO2RR in this bimetallic system. The Ag1–Cu1.1 NDs showed a 3.4-fold FE enhancement toward C2H4 and a 2-fold improvement in the overall CO2RR activity compared with the Cu NPs of similar size and shape. Figure 7 depicts a schematic summarizing the proposed mechanism behind the electrocatalytic activity of the Ag–Cu NDs. The tandem catalysis and the modified electronic structure, both endowed by the unique Ag–Cu dimer structure, were identified as the factors accounting for the enhancement in the selectivity for C2H4 and activity for CO2 reduction. Our conclusion suggests that the selectivity of bimetallic catalysts in CO2RR is sensitive to the length scale at which the metals mix. Sequential catalysis and electronic effects were identified as predominant mechanisms behind the increased selectivity toward multicarbon products in Ag/Cu catalysts when Ag and Cu were microscopically segregated (micron scale) and surface alloyed (atomic scale), respectively.26,37 Our study on the Ag–Cu NDs evidence the combination of the two effects when the mixing of the two metals occurs at the nanoscale. Considering the huge library of materials accessible by colloidal approaches, we believe similar studies have the potential to greatly impact the development of catalyst design for CO2RR.

■ ASSOCIATED CONTENT

* Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.8b12381.

Information related to synthesis, additional CO2RR results and discussion, optical properties and chemical states of samples (PDF)

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: raffaella.buonsanti@epfl.ch.

ORCID

Raffaella Buonsanti: 0000-0002-6592-1869

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by the European Research Council under Starting Grant ERC-HYCAT with Agreement Number 715634 and by the Sandoz Family Foundation.

■ REFERENCES

Electrochemical Reduction of Carbon Dioxide.

