MATRL 218: Assignment 3

Ram Seshadri (seshadri@mrl.ucsb.edu)

1. The compound OsAl has the following structure: SG = \( Pm\bar{3}m \), \( a = 3.00 \text{\AA} \), Os at \((1/2,1/2,1/2)\) and Al at \((0,0,0)\).
   
   (a) Sketch the structure as sections, and within a cube. Also use VESTA if you wish.
   
   (b) What is this structure type called?
   
   (c) OsAl\(_2\) is formed by successively stacking OsAl cubes, but every new stack is created from the old one by adding \((1/2, 1/2, \approx 1.5)\) Sketch OsAl\(_2\) as sections after generating its coordinates. Is OsAl\(_2\) cubic? What are the cell parameters?
   
   (d) Can you guess the space group of OsAl\(_2\)?
   
   (e) Can you guess how Os\(_2\)Al\(_3\) is built up?

2. The mineral Wickmanite (connectivity shown below) has corner-sharing octahedra of MnO\(_6\) and SnO\(_6\) with Mn–O and Sn–O bond lengths of 2.15 \text{\AA} and 2.02 \text{\AA} , respectively.

   Using the exponential bond-valence-sum relationship:

   \[ s = \exp \left( \frac{R_0 - R}{B} \right), \]

   and the following values for \( R_0 \) and \( B \) (\( R_0 \) for Mn(II)–O is 1.790 \text{\AA}; for Sn(IV)–O, it is 1.905 \text{\AA}, and \( B = 0.37 \text{\AA} \)), calculate the bond valence sums (BVS) for Mn, Sn, and O? What do the BVS tell you about the composition of the compound (hint: is this an oxide)?

3. Use VESTA to draw all of the binary structures discussed in class.