MATRL 218 / CHEM 277: Assignment 1

1. The cubic crystal structure of double perovskite Ba_2MgWO_6 is presented in the Oxides Structures slides. Sketch the appropriate bond-valence map for this structure. The charges are Ba^{2+}, Mg^{2+}, W^{6+} and O^{2-}. Assign charges for all the lines in the graph (as illustrated for other structures) and verify that the second Paulings rule is applicable by counting all the charges reaching O, as also described in the structures slides.

2. Use the bond valence formula:

$$s = \exp\left(\frac{R_0 - R}{B}\right)$$

and the values, $B = 0.37 \text{ Å}$, $R_0 = 1.693 \text{ Å}$ (Mg^{2+} and O) and 1.917 Å (W^{6+} and O) to estimate R for the two pairs, and thereby the unit cell parameter for Ba_2MgWO_6. The experimental value is close to 8.10 Å.

3. You have seen the glide g in 1D and 2D. What do the n and d glides in 3D crystals do? Depict them with appropriate sketches.

4. Cubic cells always have a $\bar{3}$ or 3 in the space group label. What is the $\bar{3}$ symmetry element in a cube?

5. Show that $\bar{6}$ also implies a 3-fold rotation.

6. Sketch the 6_1 and 6_5 mirror pairs of symmetry operations and the 6_2 and 6_4 mirror pairs. Use a low-symmetry motif of the letter “R” for your illustration.

7. Sketch 2D objects with the following symmetries: (i) $2m'$ and (ii) $4mm$. Indicate the mirror lines. Also, mention any other symmetry operations that you find.

8. The plane groups $p31m$ and $p3m1$ differ in that, in one of them but not the other, all rotation axes are on mirrors. Sketch examples of the two plane groups, indicating rotation axes and mirrors.