MATRL 218/CHEM277: Assignment 4

Ram Seshadri (seshadri@mrl.ucsb.edu)

1. The Lennard-Jones potential for a system of identicals particles is:

\[U(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right] \]

Where \(\epsilon \) is the well depth, and \(\sigma \) is the particle diameter. (i) Sketch the distance-dependence of this potential using scaled units, ie. set \(\sigma = 1 \) and \(\epsilon = 1 \). Approximately how many atomic diameters does one need to be separated by, before there is effectively no interaction. (ii) Determine by setting \(\partial U/\partial r = 0 \), the value of \(r/\sigma \) for which the potential is minimum.

2. The \textit{wrong} way to calculate the Madelung constant for the NaCl structure is to sit on one of the ions (say Na\(^+\)) and then calculate the attractive interactions to the next 6 Cl\(^-\), the repulsive interactions to the next 12 Na\(^+\) etc. Try and write a few terms of this series and state why this looks like a bad idea.

3. The geometric Madelung constant for a pair or monovalent ions of opposite sign, separated by unit distance, is 1. Calculate the constants (on a \textit{per-pair} basis) for a square of monovalent ions of alternating sign, and for a cube, where the square edge and cube edge are the same unit distance. How far are you from the Madelung constant of the NaCl structure, which is 1.74756.

4. Write a code to calculate the geometric Madelung potential for the NaCl lattice by building larger and larger cubes of ion pairs of Na\(^+\) and Cl\(^-\) assuming that all near-neighbor distances are 1. Make a plot of the Madelung potential against \(n \), where \(n \) is the number of ion pairs that form the edge of the cube. Submit this with the code. You can collaborate with one other person, and you have two weeks.