Strong Electron Correlations in Oxide Quantum Wells

Susanne Stemmer

Materials Department
University of California, Santa Barbara

Correlated Oxides and Oxide Interfaces Workshop
William I. Fine Theoretical Physics Institute, University of Minnesota
May 3, 2014
Acknowledgements

- Graduate students and postdocs:
 - Clayton Jackson
 - Jack Zhang
 - Pouya Moetakef (now at UMD)

- Collaborators:
 - Jim Allen, Leon Balents (UCSB Physics, KITP)

- Funding: NSF, DOE, ARO, DARPA
Outline

- Quantum Criticality
- Manipulating strong electron correlations in oxide heterostructures
- Magnetism and non-Fermi liquid behavior in oxide quantum wells
- Outlook
Quantum critical points are driven by quantum fluctuations that are present even at 0 K

Quantum criticality persists to finite temperatures

Leads to new electronic behavior and novel states of matter
Introduction: Quantum Critical Points

Unconventional superconductors, heavy fermions, organics, ...

Key features (?):
- Antiferromagnetism
- Nearly 2D

Iron-based superconductors
- Tetragonal, magnetic fluctuations
- Orthorhombic, magnetic fluctuations
- Orthorhombic, antiferromagnetic

CuO-based superconductors
- Insulator and antiferromagnetic
- Strange metal
- Pseudogap phase
- Superconducting

Non-Fermi Liquid

Introduction: Quantum Critical Points

Fermi Liquid: \(R = R_0 + A T^2 \)

<table>
<thead>
<tr>
<th></th>
<th>Ferromagnetic (Q = 0)</th>
<th>Antiferromagnetic (Q ≠ 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>3D</td>
<td>2D</td>
</tr>
<tr>
<td>Resistance</td>
<td>(T^{5/3})</td>
<td>(T^{4/3})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T^{3/2})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(T)</td>
</tr>
</tbody>
</table>

- Leads to new electronic behavior and novel states of matter
Introduction: Quantum Critical Points

Key open questions:
- Roles of dimensionality and order parameter symmetry in QCPs?
- Which types of critical fluctuations mediate new ordered phases (i.e., is antiferromagnetism needed)

Limitations of bulk material studies:
- Complexity of materials systems
- Truly two-dimensional systems are difficult to obtain
- Dimensionality cannot be manipulated
- Doping as the tuning parameter changes many other parameters:
 - Disorder
 - Lattice distortions
Complex Oxide Heterostructures

Exceptional control (and simplicity):

- Precise control over **dimensionality** using layer control and electrostatic confinement
- **Electrostatic doping**: charge carriers without disorder
- Proximity effects to control lattice and introduce magnetic order
Complex Oxide Heterostructures

Design interactions from bottom-up for improved understanding and control
A high-density, two-dimensional electron system in close proximity to magnetism
Mott/Band Insulator Interfaces

GdTiO$_3$
- Mott insulator
- Ferrimagnet

SmTiO$_3$
- Mott insulator
- Antiferromagnet

Orbital order is crucial in determining the magnetic state
- Anti-ferro-orbital in ferromagnetic RTiO$_3$
- Ferro-orbital in antiferromagnetic RTiO$_3$

Requirements for the 2DEG

Conditions for Strong Electron Correlations

- High electron densities are key for strong electron correlation physics
- Short range Coulomb interactions require significant probability for two electrons to occupy the same site
- Opposite of the usual correlation regime investigated in conventional semiconductor 2DEGs
Mobile charge carrier density at the interface of $\frac{1}{2}$ electron per interface unit cell, or $\sim 3 \times 10^{14}$ cm$^{-2}$

Forms a high-density, quantum confined 2DEG at the interface

Order of magnitude higher charge density than what is achievable in conventional semiconductors

Formally analogous to LaAlO$_3$/SrTiO$_3$

MBE of Mott/Band Insulator Interfaces

Sheet carrier density (n-type) is independent of SrTiO$_3$ thickness

Conduction in a space charge layer with constant thickness

Sheet charge carrier density corresponds to the theoretical expected density of $\sim 3 \times 10^{14}$ cm$^{-2}$

- GdTiO$_3$ is insulating (p-type)
- Remarkable drop in sheet resistance even for one unit cell of SrTiO$_3$
- Sheet resistance independent of SrTiO$_3$ thickness for all thickness greater than 20 nm
- Sheet carrier density (n-type) is independent of SrTiO$_3$ thickness
- Conduction in a space charge layer with constant thickness
- Sheet charge carrier density corresponds to the theoretical expected density of $\sim 3 \times 10^{14}$ cm$^{-2}$

2DEGs at Mott/Band Insulator Interfaces

- Sheet carrier density scales with number of multilayer repeats (interfaces)
- Independent of SrTiO$_3$ or GdTiO$_3$ thickness
- Each interface contributes a constant charge carrier density $\sim 3 \times 10^{14}$ cm$^{-2}$

Extreme Carrier Density Quantum Wells

Very large 3D carrier densities in SrTiO$_3$ quantum wells
“2 SrO” quantum well: 1 electron/three Ti layers
On-site Coulomb repulsion (electron correlations)?
Quantum well in GdTiO3 become insulating at 2 SrO thickness

- Abrupt transition and orders of magnitude change in resistance
- 2D small polaron gas
- All quantum wells in SmTiO3 are metallic
- Even a single SrO layer in SmTiO3 remains metallic

Shown are the A-site displacements (deviation from 180° angle in cubic SrTiO₃)

- Sr atom displacements in the 2 SrO-thick, insulating quantum wells, consistent with octahedral tilts
- Sr atoms are NOT displaced in the metallic quantum wells
- Structural transition accompanies the transition to insulating phase
- Abrupt transition

Structural displacements are much smaller in quantum wells in SmTiO$_3$

- Explains why the quantum wells remain metallic
- Larger difference than expected from the bulk tilts in adjacent Mott insulator
Mott/Band Insulator Interfaces

- GdTiO$_3$
- Mott insulator
- Ferrimagnet

Quantum Well

- SmTiO$_3$
- Mott insulator
- Antiferromagnet

Magnetism and Dimensionality?
Mott/Band Insulator Interfaces

- GdTiO₃
- Mott insulator
- Ferrimagnet

Quantum Well

2DEG

Magnetism and Dimensionality?
Ferromagnetism in the 2DEG

- Ferromagnetic hysteresis below ~ 5 K
- Spin polarized 2DEG in narrow quantum wells

Ferromagnetism in the 2DEG

- Angle-dependent behavior consistent with anisotropic magnetoresistance (AMR)
- Spin-polarized, high-density 2DEG at an epitaxial oxide interface
- Negative AMR ($\Delta \rho_A = \rho_\parallel - \rho_\perp < 0$)
- Similar to III-V 2DHGs under compressive strain
- Indicative of spin-orbit coupling in the 2DEG

\[\rho_{xx} = \rho_\perp + \Delta \rho_A m_x^2 \]
\[\rho_{xy} = \Delta \rho_A m_x m_y \]
\[m_x = \cos \alpha \cos \beta \]
\[m_y = \sin \alpha \cos \beta \]

Ferromagnetism in SrTiO$_3$ quantum well is distinct from that of GdTiO$_3$.

- Metallic conducting is GdTiO$_3$ not magnetic.
- Onset of hysteresis in quantum well at about 5 K, vs. $T_c = 20$ K in GdTiO$_3$.
- Coercive fields are different.

Mott/Band Insulator Interfaces

SmTiO₃
Mott insulator
Antiferromagnet

Quantum Well

Magnetism and Dimensionality?
Non-Fermi liquid (NFL) behavior above cross-over temperature indicates proximity to a quantum critical point. Cross-over temperature changes with quantum well thickness. 1-SrO layer quantum wells show NFL at all temperatures. Temperature exponent of NFL = 5/3.

Temperature exponent of NFL = 5/3

Indicates three-dimensional critical fluctuations with a wave vector $Q = (0,0,0)$

Both SmTiO$_3$ and the quantum well have orthorhombic symmetry, with a unit cell that is doubled along the three cube axes $→ Q = (0, 0, 0)$

The electron system is two-dimensional

Can we reduce the dimensionality of the fluctuations and tune the exponent?

→ Reduce the thickness of the SmTiO$_3$
Magnetism and octahedral tilts are suppressed in thin GdTiO₃ films

Suppression of orbital order

Fermi-liquid behavior for SmTiO$_3$ superlattices with $x < 12$ u.c.

NFL for 16 u.c SmTiO$_3$ with temperature exponent = $4/3$

Reducing the dimensionality of the SmTiO$_3$ changes critical exponent

<table>
<thead>
<tr>
<th></th>
<th>Ferromagnetic ($Q = 0$)</th>
<th>Antiferromagnetic ($Q \neq 0$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>3D</td>
<td>2D</td>
</tr>
<tr>
<td>Resistance</td>
<td>$T^{5/3}$</td>
<td>$T^{4/3}$</td>
</tr>
<tr>
<td></td>
<td>$T^{3/2}$</td>
<td>T</td>
</tr>
</tbody>
</table>

Magnetic State of 1 SrO Quantum Well

- No ferromagnetic hysteresis
- Positive magnetoresistance below 4 K indicates SDW

\[\Delta R_{xx}/R_{xx}(0) \] vs. \(B (T) \) for different temperatures:
- 2 K
- 4 K
- 6 K
- 10 K
- 20 K
- 30 K

\[R_s (k\Omega/sq) \] vs. \(T^{5/3} (x10^3 K^{5/3}) \) for 1 SrO

- Number of SrO layers and coupling between layers are the tuning parameters for NFL
- Quantum critical point
Comparison: $RTiO_3/SrTiO_3/RTiO_3$ ($R = \text{Gd, Sm}$)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron Density in SrTiO$_3$ QW</td>
<td>7×10^{14} cm$^{-2}$</td>
<td>7×10^{14} cm$^{-2}$</td>
</tr>
<tr>
<td>Metal-insulator transition</td>
<td>✓ at 2 SrO layers; small polaron gas</td>
<td>itinerant to 1 SrO</td>
</tr>
<tr>
<td>Fermi liquid</td>
<td>✓</td>
<td>NFL below 2 SrO</td>
</tr>
<tr>
<td>Mass enhancement</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Magnetism below critical thickness</td>
<td>Ferromagnetic 2DEG</td>
<td>AFM/Spin density wave</td>
</tr>
<tr>
<td>Octahedral tilts below critical thickness</td>
<td>✓ at MIT</td>
<td>✓ small tilts</td>
</tr>
</tbody>
</table>

Precise Control and Design of Emergent Phenomena
Theory and more sophisticated measurements are needed to better understand dimensionality of fluctuations, the ordered state, and the tuning parameter.
Electron Correlation Physics with Oxide Quantum Structures

- Spin-polarized, high-density 2DEG
- Two-dimensional antiferromagnetism
- Proximity to quantum critical point
- Conditions favoring unusual states of matter are present in these quantum wells
 - Non-centrosymmetry
 - Strong electron correlations
 - Proximate magnetism
 - Spin-orbit coupling
- Can test more complex spin states and fluctuations, and other proximity effects, such as superconductivity
Thank you