THE VIBRATIONAL SPECTRUM

Selection Rules. The most intense transitions are induced by the E field of the radiation interacting with the electric dipole of the molecule. We'll show when we study perturbation theory that the intensity of such a transition is proportional to the square of the transition dipole moment,

\[\langle \psi_i | \mu | \psi_f \rangle. \]

\[\psi_i \quad \psi_f \]

Fig. 11.1. The transition dipole for \(\psi_i \rightarrow \psi_f \).

Here \(\mu \) is the dipole moment of the molecule at the bond length of the initial state, and \(|\psi_i\rangle = |v\rangle \), \(|\psi_f\rangle = |v'\rangle \) (since we're changing vibrational state). So we want to calculate

\[\langle v' | \mu | v \rangle \]

We can expand the dipole moment as a Taylor series about its value at the equilibrium bond length

\[\mu = \mu_0 + \left(\frac{d\mu}{dg} \right)_0 \xi + \ldots \]

\(\mu_0 \) = dipole moment when displacement \(\xi \) is zero.
To a reasonable approximation we can ignore higher order terms, since the dipole is approximately linear in the displacement. (In fact in a purely ionic system it's exactly linear! Deviations are caused by rearrangements of charge when the bond length changes.)

\[\mu = \mu_0 + (d\mu/d\xi)_0 \xi \]

Fig. 11.16. The dependence of electric dipole moment on bond length.

\[\langle \nu', \mu_0 \mid \nu \rangle = \langle \nu', \mu_0 \mid \nu \rangle + \langle \nu', \mu_0 \mid \frac{\partial \mu}{\partial \xi} \rangle \xi \mid \nu \rangle \]

\[= \mu_0 \langle \nu', \mu_0 \mid \nu \rangle + \left(\frac{\partial \mu}{\partial \xi} \right)_0 \langle \nu', \xi \mid \nu \rangle \]

0, by orthogonality of \(|\nu'\rangle, |\nu\rangle \) (\(\frac{\partial \mu}{\partial \xi} \)) \(\neq 0 \)!

\(\therefore \) In order for a molecule to show vibrational transitions, its dipole moment must change with displacement! (Homonuclear diatomics, e.g., H\(_2\), Cl\(_2\) don't show a vibrational spectrum.)
Note that the harmonic approximation predicts only one line in the spectrum, at energy, \(E = E_{v+1} - E_v = \hbar \omega \)

This is not entirely true! There are 2 sources of anharmonicity:

1. Mechanical Anharmonicity
 - Typical real potential
 - Less confining as \(E \uparrow \):
 - energy levels converge (become "less quantized") as \(E \uparrow \)
 - Also U's change from those of a H.O.: selection rules are relaxed and transitions with \(\Delta v = \pm 2, \pm 3, \ldots \) appear in spectrum.

Fig. 11.17. The harmonic approximation and the actual molecular potential energy.

2. Electrical Anharmonicity: \(\mu \) may have terms \(\propto \xi^2, \xi^3 \) etc. Then transitions corresponding to \(\Delta v = 2, 3 \) etc. (overtones) are allowed.
An Example: \(\text{CO}_2 \)

\(\text{not normal modes} \)

\(\text{symmetric normal mode} \)

\(\text{anti-symmetric normal mode} \)

\(\text{translation} \)

\(\text{vibration in 1 bond} \)

\(\text{vibration in the other bond} \)

\[Q_1 = \frac{1}{\sqrt{2}} \left(q_1 - q_3 \right), \quad K_1 = \frac{k}{M_0} \]

\[Q_2 = \frac{1}{\sqrt{2M}} \left(\sqrt{M_0} q_1 - 2 \sqrt{M_0} q_2 + \sqrt{M_0} q_3 \right), \quad K_2 = \frac{kM}{M_0 M_1} \]

\[Q_3 = \frac{1}{M} \left(M_1 q_1 - \sqrt{M_0} q_2 + \sqrt{M_0} q_3 \right), \quad K_3 = 0 \]

\(M = \text{total mass of molecule} = M_0 + 2M_1 \)

Fig. 11.21. (a) and (b) show two of the bond vibrations; (c) and (d) show two of their linear combinations corresponding to normal modes; (e) is a translational displacement.

Note that relative masses determine form of normal coordinates (via the effective force constants, \(k \)).