The Schrödinger Equation

-a wave equation for e⁻ (+ other quantum mechanical "stuff")

Time-Independent:

\[-\frac{\hbar^2}{2m} \nabla^2 \psi + V \psi = E \psi\]

What is \(\psi \)? \(|\psi|^2 = \psi^* \psi \) is the probability distribution of the electron.

\(\text{i.e. } |\psi(x,y,z)|^2 \, dx \, dy \, dz \) is the probability that the electron will be found in the small volume \(dx \, dy \, dz \) at position \((x,y,z)\).

\(E \) is the total energy of the electron
\(V \) is the potential energy of the electron

\(\therefore -\frac{\hbar^2}{2m} \nabla^2 \) must be the kinetic energy of the electron.

But we know that \(\text{K.E.} = \frac{p^2}{2m} \Rightarrow \)

\(p = -i\hbar \nabla \)

So electron wavefunctions that have large gradients (i.e. vary rapidly with distance) have high K.E. + large momentum.

Let's look at some examples...