Coupled Electron-Ion Monte Carlo Study of Hydrogen Phases

Kris Delaney, David Ceperley
University of Illinois at Urbana-Champaign

Carlo Pierleoni
Universita del l’Aquila, l’Aquila, Italy

Supported by NSF DMR 04-04853 and NSF DMR 03-25939 ITR
Overview

• Introduction to Coupled Electron-Ion Monte Carlo (CEIMC)

• Trial wavefunction

• Open problems in hydrogen EoS

• Application of CEIMC to H

• Liquid-liquid phase transition results
Introduction to CEIMC

- Generate Boltzmann weights of nuclear configurations using MC sampling
- Supports a range of temperatures, \(T < 10,000 \text{K} \)
- QMC methods usually limited to \(T = 0 \text{K} \) only
- PIMC for high \(T \) (\(\sim 3,000 \text{K} \)) only

Couple MC simulation of electrons and nuclei:

- Electrons at \(T = 0 \text{K} \)
- Nuclei classical or quantum (PI) at finite \(T \)

Supports a range of temperatures, \(T > 100,000 \text{K} \)

Using MC sampling

Generate Boltzmann weights of nuclear configurations
CEIMC Details

• Classical Nuclei:
 – Metropolis acceptance ratio for nuclear moves:
 \[A = \min\{1, \exp(-\beta \Delta E(s,s'))\} \]
 – Depends on \(\Delta E(s,s') = V(s) - V(s') \), B.O. energies

• B.O. energies:
 – VMC or RQMC
 – RQMC: Projector method with no mixed estimator
 Energy difference unbiased

• Twist-averaged boundary conditions (TABC) to reduce finite-size effects. Analogous to \(k \)-integration.
Penalty Method

• B.O. energy difference is noisy

• Metropolis acceptance ratio is biased

• Adjust using “Penalty Method”:
 – Satisfy detailed balance on average
 – Acceptance ratio becomes

\[
A = \min \left[1, \exp \left(-\beta \left(\Delta E(s, s') + \frac{\sigma^2}{2} \right) \right) \right]
\]

 – Tolerates noisy estimates of energy differences
 – In practice, \(\sigma \) estimated \(\Rightarrow \) further terms

• Correlated sampling methods \(\Rightarrow \) noise lowered
 \(\Rightarrow \) fewer noise rejections
Why use CEIMC?

- **MD**: Samples dynamics but larger cells and longer simulations required
- **MC**: Fast exploration of configuration space, not constrained by real dynamics. No time step error.

- **LDA** H fluid pair correlation functions less structured than CEIMC; match CEIMC for $2T$.
 - PRL 93, 146402 (2004)
- **LDA/GGAs** predict wrong metallization pressure of H at $T=0K$
B.O. Wavefunction

- Fast + transferable wavefunction required, permit many nuclear moves
- Solve single-particle Hamiltonian with model effective potential
- Eigenvectors used in Slater-Jastrow wavefunction

- Potential type?

\[V(r) = \frac{e^{-\alpha r}}{r} \]

8-atom SC cell

16-atom mHCP cell
Application to Hydrogen

- Current phase diagram:

- Open problems:
 - Liquid-liquid phase transition
 - Shape of melt curve
Results

- Simulation details:
 - 32 atoms, NVT ensemble
 - $T = 2000K$
 - $P = 50 – 200 \text{ GPa}$
 - VMC for ΔE
 - 1000 twist angles

- All state points begin with molecular fluid
Conclusions

• Molecular dissociation occurs at T=2000K in CEIMC. Appears to be continuous.

• New wavefunction used in CEIMC, appears fast and accurate

• Future work:
 – Begin with other initial configurations
 – Assess size of hysteresis effects
 – Further assess size of finite-size effects
 – Investigate metallization of fluid
 – Other temperatures
 – Quantum nuclei