MATRL 218/CHEM 227: Assignment 4

Ram Seshadri (seshadri@mrl.ucsb.edu)

Due date: March 1 2005

1. In class, we examined the band structure of a square lattice of \(s \) orbitals. Sketch out the band structure of a rectangular lattice of \(s \) orbitals with \(a \) and \(b \) as the lattice parameters and \(a < b \). Remember that \(X(0, \frac{a}{2}) \) and \(Y(\frac{b}{2}, 0) \) will not be degenerate. Sketch the DOS alongside.

2. Sketch the band structure of square lattice of \(p_x \) and \(p_y \) orbitals, with the DOS alongside.

3. Sketch the most bonding and the most antibonding crystal orbitals formed from \(sp^2 \) orbitals on carbon in graphite. Do the same for \(p_z \) orbitals.

4. Sketch the most antibonding \(sp^3 \) crystal orbital for (a few) Si atoms within the unit cell of diamond Si. Why is molten Si a metallic, while crystalline Si is insulating.

5. \(\text{FeS}_2 \) (fool’s gold) has the pyrite structure (octahedral Fe) and because of a bond between the two S atoms (characterized by a short S-S distance), it can be formulated \(\text{Fe}^{2+}[\text{S}_2]^{2-} \). Magnetic measurements suggest that the compound is non-magnetic.

 (a) Sketch out the crystal field (showing \(t_{2g} \) and \(e_g \) levels) and fill them with the correct number of electrons.

 (b) Sketch out schematic densities of states showing Fe \(d \) states and S \(p \) states. Do you expect a metal or an insulator ?

 (c) What do you expect the situation in Co\(\text{S}_2 \) to be ? It has the same crystal structure.

6. \(\text{TiS}_2 \) has the layered \(\text{CdI}_2 \) structure, and there are no short S-S distances.

 (a) What is the oxidation state of Ti ?

 (b) Sketch out schematic DOS showing Ti \(d \) states and S \(p \) states. Do you expect an metal or an insulator ?

 (c) \(\text{TiS}_2 \) shows metallic conductivity. Suggest a possible origin ?