Theory of Hydrogen-Related Levels in Semiconductors and Oxides

Chris G. Van de Walle

Materials Department
University of California, Santa Barbara
Acknowledgments

• Computations
 J. Neugebauer (Max-Planck-Institut, Düsseldorf)
 A. Janotti (UCSB)
 S. Limpijumnumong (Suranaree U. Tech., Thailand)
 B. Tuttle (Penn State University)

• Support
 AFOSR; ONR
 Palo Alto Research Center
 Alexander von Humboldt Foundation
 Fritz-Haber-Institut & Paul-Drude-Institut, Berlin
Motivation for studying hydrogen

• Omnipresent impurity
 – Growth
 • vapor-phase transport, hydrothermal growth, MOCVD, MBE, sputtering (H\textsubscript{2} atmosphere), …
 – Processing: forming gas anneal, …

• Beneficial effects & applications
 – Passivation of defects
 • Si/SiO\textsubscript{2}
 • Reliability? (deuterium)
 • High-k dielectrics?
Motivation for studying hydrogen

• Unintended / detrimental effects
 – Passivation of dopant impurities
 • DRAM variable retention time
 • Nanoscale MOSFETs

Source: Intel
Motivation for studying hydrogen

- Unintended / detrimental effects
 - Passivation of dopant impurities
 - DRAM variable retention time
 - Nanoscale MOSFETs
 - Trapping of hydrogen in oxide
 - Stress-induced leakage currents
 - Charging of interface
Hydrogen impurities

- Understanding “interstitial” hydrogen
 ⇒ interactions with defects and impurities

- Hydrogen is **electrically active!**
 - H^0: rarely important
 - H^+ → donor
 - $H^- → acceptor$

- Amphoteric impurity
 - relative stability of H^+/H^-
 depends on Fermi level
Example: interstitial H in GaN

Amphoteric impurity:
- H^+ in p-type / H^- in n-type
 ➔ Always counteracts prevailing conductivity

- **First-principles calculations**
 - Density-functional theory
 - Pseudopotentials / Atomic relaxations

- **Applies to**: Si, …; GaAs, AlAs, GaN, AlN, …; ZnSe, …

- **What about ZnO?**
Zinc oxide devices

- Applications in optoelectronics
- Zinc oxide: typically n-type
 - Conductivity due to electrons
 - Cause: heavily debated
 - Traditionally attributed to oxygen vacancies
- First-principles calculations:
 - Oxygen vacancies are not shallow donors!
 - So what is the cause?…
Hydrogen in ZnO

H^+ is the only stable charge state

Confirmed by more than 20 experiments to date
Why is ZnO different?

• Position of $\varepsilon(+/\text{-})$ in the band gap

Question: Why is $\varepsilon(+/\text{-})$ so much higher in energy in ZnO?
Why is ZnO different?

Band lineups!

GaN

ZnO

$\epsilon (+/-)$

CB

VB
Why is ZnO different?

Band lineups!

GaN ZnO

\[\varepsilon(+/-) \]

CB VB
Use natural band lineups to align band structures

Band lineups

E (eV)

Si Ge SiC AlN GaN InN GaAs GaSb ZnSe ZnO SiO$_2$

hydrogen $\varepsilon(+/−)$ level

Band lineups

Band lineups

E (eV)

Si, Ge, SiC, AIN, GaN, InN, GaAs, GaSb, ZnSe, ZnO

hydrogen $\varepsilon(+/-) level$

Band lineups

H exclusively a donor

Hydrogen $\epsilon(\pm)$ level

Band lineups

H exclusively an acceptor

Band lineups

E (eV)

0
-2
-4
-6
-8
-10

Si Ge SiC AlN GaN InN GaAs GaSb ZnSe ZnO SiO$_2$

hydrogen $\varepsilon(+/−)$ level

Band lineups

<table>
<thead>
<tr>
<th>Material</th>
<th>E (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>-10</td>
</tr>
<tr>
<td>Ge</td>
<td>-8</td>
</tr>
<tr>
<td>SiC</td>
<td>-6</td>
</tr>
<tr>
<td>SiO₂</td>
<td>-4</td>
</tr>
<tr>
<td>SnO₂</td>
<td>-2</td>
</tr>
<tr>
<td>HfO₂</td>
<td>0</td>
</tr>
<tr>
<td>TiO₂</td>
<td>2</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>4</td>
</tr>
<tr>
<td>In₂O₃</td>
<td>6</td>
</tr>
<tr>
<td>ZnO</td>
<td>8</td>
</tr>
<tr>
<td>AlN</td>
<td>10</td>
</tr>
</tbody>
</table>

SnO₂
H exclusively a donor

Transparent conductors
Band lineups

E (eV)

Si Ge SiC AlN ZnO In$_2$O$_3$ TiO$_2$ HfO$_2$ ZrO$_2$

High-k dielectrics
Conclusions

• Hydrogen strongly interacts with defects and impurities
• Understanding this behavior:
 – First-principles calculations
• Interstitial hydrogen:
 – basis for understanding complex interactions
• Towards general understanding:
 – Universal alignment
 – Predictive model
• Connection with band lineups