Retinal Penetration and Distribution of Avastin (Bevacizumab) Following Intravitreal Injection

Carol Cortez, Science Teacher, Westlake High School
Mentors: Geoffrey P. Lewis, Ethan Chapin
Faculty Mentor: Steven K. Fisher

Center for Bio-Image Informatics
Research conducted at Neuroscience Research Institute
University of California, Santa Barbara

Supported by NSF ITR #0331697
Avastin - Background

- Avastin is a relatively new drug used to treat specific cancers due to its anti-angiogenic properties.
- Recently, Avastin has been shown to be effective in treating the new vessel growth that is the cause of the devastating effects of age-related macular degeneration.
Angiogenesis and Cancer

• VEGF is the protein produced by tumors that stimulates vessel growth.

• By binding to VEGF, Avastin prevents the protein from binding to cells, thereby inhibiting new vessel growth in macular degeneration.
Experimental Method in Evaluating Avastin

- Ten rabbits were injected intravitreally with 0.1 mL of Avastin in the right eye and with 0.1 mL of phosphate buffered saline (PBS) in the left eye (control).

- The eyes were fixed and processed for immuncytochemistry at 24 hours, 7 days, and 28 days post-injections.
Immunocytochemistry

- Retinal sections of 100 µm thickness were triple labeled with antibodies to the humanized Avastin IgG (red), vimentin (Müller cells, green), and isolectin B4 (microglia cells, blue).

- Application of light excites the fluorochrome, causing the tissue to emit fluorescence.

- The sections were then viewed using a laser scanning confocal microscope.
Normal Retinal Morphology

ONL

INL

GCL

ILM
24 Hours Post-Injection

- Avastin (red) penetrated the entire width of the retina
7 Days Post-Injection

- Avastin labeling can still be seen at high levels throughout the retinal layers.
- Increased intensity of Avastin labeling is evident in the Müller cells.
28 Days Post-Injection

- Using increased gain settings, only slight ILM labeling of Avastin could be seen.
Comparison of Müller Cells and Microglia

Activated retina without Avastin
(3 day post retinal detachment)

Non-activated retina after Avastin
(28 days post-injection)
Summary and Conclusions

- Avastin is distributed across the retina within 24 hours.
- Avastin is taken up by specific cell types.
- It quickly reaches the region of new vessel growth in age-related macular degeneration.
- Neither Müller cells nor microglia became reactive as a result of the injected Avastin.

Speculation: Avastin may be transported throughout the retina by the Müller cells.
Future Directions

• The dose of Avastin used in this study was twofold greater than that used in treating humans with eye disease.

• Further studies are being undertaken to evaluate the bioactivity of smaller doses, comparable to those used in a clinical setting.
Acknowledgements

- Steven K. Fisher – Professor, MCD Biology
- Geoffrey P. Lewis – Research Biologist
- Ethan Chapin – Senior Research Associate